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1 Details: Modeling Millable Geometry
1.1 Cylinder Minkowski Sum Proposition

Our representation, MXG leverages flat extrusions that satisfy the
minkowski condition to ensure that each subtraction V; is millable.
Here, we first provide the proposition and its proof that this repre-
sentation is built on.

We begin by characterizing the class of solids that can be con-
structed via subtractive milling!. A solid P C R® is millable if it can
be expressed as:

P:M—UV,», 1)

where M is the material stock and each V; is a millable volume
removed by the i-th milling operation. To be millable, each V; must
be a Minkowski sum? with respect to the milling tool’s rotational
swept volume. The rotational sweep of flat-end uniform-radius drill-
bit yields a cylinder. Therefore, this can be written as:

Vi = X; ® Cyl,, @)

IWe assume all solids are regular closed subsets of R3 e, equal to the closure of their
interior.

2Given two sets A, B C R, their Minkowski sum is defined as A®@ B={a+b | a €
A, b € B}.
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where X; is an arbitrary shape and Cyl; c R? is the rotational
sweep of the drill bit for the i-th operation. To enforce accessibility,
Cyl; is modeled as a semi-infinite cylinder extending away from
the milling direction, ensuring that each V; is accessible from out-
side. This formulation guarantees millability by construction: each
subtraction aligns with tool geometry and access constraints, mak-
ing the resulting solid P physically achievable through sequential
milling.

The following proposition characterizes when a solid admits such
a representation:

ProPoSITION 1.1. Let V C R3 be a solid, and let Cyl, denote the
semi-infinite cylinder of radius r along the z-axis. ThenV = X @ Cyl”
for some solid X C R? if and only if:

(1) (Minkowski Condition) For every z, the horizontal slice
C(z) = {(x,y) e R? | (x,y,2) € V}

satisfies C(z) = X (z) ® B, for some X(z) C R%, where B, isa
circle of radius r.
(2) (Nesting Condition) For all z; < z;, C(z1) € C(z2).

Intuitively, this proposition states that a solid is millable with a
flat-end bit of radius r along a direction (e.g., the z-axis) if, when
sliced perpendicular to that direction, each slice is a Minkowski
sum of some base shape with a disk of radius r, and the slices nest
monotonically—i.e., the volume forms a heightfield from the milling
direction. Although stated here for the z-axis, the same conditions
apply for any milling direction n € S? after rotation.

PROOF (IF DIRECTION). (&) Suppose V C R3 satisfies the follow-
ing conditions:
(1) For each height z, the horizontal cross-section
C(z) ={(x,y) eR?*| (x,y,2) € V}

satisfies C(z) = X(z) ® B, for some planar shape X(z) c R2.

(2) The slices are nested: for all z; < z3, C(z1) C C(z2).

We define the solid: X = {(x,y,2) € R® | (x,y) € X(z)}, and
let Cyl, = B, X [0, o0) denote the semi-infinite vertical cylinder of
radius r.

We will show that V = X & Cyl,..

(i) V € X & Cyl,: Let (x,y,2z) € V. Then by definition, (x,y) €
C(z) = X(z) @ B,. So there exist (x’,y’) € X(z), (u,0) € B, such
that (x,y) = (x’ + u,y’ + v). Letting w = 0, we have:

(xy,2) =(x",y,2) + (u, 0, w),
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Fig. 1. Our custom in-house node-based visual programming interface. On the left we show a simple program to create a shape. On the right we show the
program to create a simple joint "Ari Tsugi". Notice the reuse of sub-graphs for 2D CSG expression between the two parts. Further, we also record the assembly
sequence using a state machine. We highlight the nodes which correspond to the Assembly states in the right image (top left of the right image).

where (x’,y’,z) € X and (4,0, w) € Cyl,. Thus, (x,y,z) € X ®Cyl,.
(i) X ® Cyl, C V: Let (x,y,z) € X & Cyl,. Then there exist
(x",y’,2") € X, (u,0,w) € Cyl, such that:
(6y,2z) = (x' +uy +0,2 +w),
with (x’,y") € X(2’), (u,v) € By, w > 0. By the nesting condition,
X(z') € X (2 +w).So (x',y") € X(z), and hence (x,y) € X(z) ®
B, =C(z). Thus, (x,y,2z) € V.
Conclusion: We have shown that V € X © Cyl, and X © Cyl, C V,
hence:
V=XoCyl. O
m]

PROOF (ONLY IF DIRECTION). (=) Assume V = X & Cyl,, where
Cyl, = B, x [0, ) is a semi-infinite cylinder aligned with the z-axis.

We will show that the horizontal slices of V satisfy both the
Minkowski and nesting conditions stated in the proposition.

(i) Minkowski Condition. Fix any height z € R, and define the
horizontal slice of V at height z as

S(z) = {(x,y) €R*| (x,y,2) € V}.

Since V = X @ Cyl,, for any (x,y, z) € V, there exists (x’,y",z") € X
and (u,0,w) € B, X [0, o) such that

(xy,2) =" y.,2") + (u,0,w).
This implies z = 2’ + w with w > 0, so 2’ < z. Let us define
X(z) = {(x’,y’) € R?* | 32’ < z such that (x’,y,z’) € X}.
Then for any (x,y) € S(z), we have (x,y) € X(z) ® B,. Conversely,

forany (x’,y’) € X(z) and (u,v) € By, the point (x"+u,y’+v,z) € V.

Therefore,
S(z) =X(z) @ B,.

(ii) Nesting Condition. Let z; < zz. Then by construction, X (z;) C
X (z2), since {z’ < z1} € {2’ < z,}. Taking Minkowski sums with
B,, we get:

S(z1) = X(z1) ® B € X(2z2) ® B, = 5(z3),

as required. O

SIGGRAPH Asia "25, December 15-18, 2025, Hong Kong, China.

(b) (@) (b)

Fig. 2. Fixed interface constraints during slice-wise optimization. We show
two example joints with the interface with non-aligned fixed extrusions
highlighted in red. These fixed interfaces are preserved by enforcing a
strong boundary loss, allowing the optimization to proceed on a compact
set of slice-aligned contours without hampering tight coupling between
non-aligned extrusions.

A constructive way to satisfy these conditions is to extrude a
2D region C; C R?, embedded in a plane orthogonal to the milling
direction n;, over a semi-infinite interval (—oo, h;). This ensures
that the volume forms a heightfield along n;, satisfying the nesting
condition. If C; additionally satisfies the Minkowski condition (i.e.,
C; = X; ® B, for some X; € R?), then the resulting solid is millable
with a flat drill bit of radius r. This leads naturally to our core
primitive: the subtractive extrusion, which forms the foundation of
the MXG representation.

1.2 Valid Dilation and Erosion Operations

As described in the main paper, each extrusion field &; is defined
by a 2D signed distance function (SDF) f;, constructed using sym-
bolic expressions composed of primitives and Boolean operations
such as union, intersection, difference, and complement. While this
representation offers high expressivity, the general protocol for



evaluating such expressions using min/max functions yields only
pseudo-SDFs—functions that preserve the sign of the distance but
do not provide accurate Euclidean values [1].

This approximation is detrimental for morphological operations
such as dilation and erosion, which rely on exact distance values
to compute correct offsets. To address this, we convert each sym-
bolic expression into a PolyCurve representation: a closed non-
intersecting polygonal chain composed of straight-line segments
and circular arcs. We ensure that all Boolean operations (e.g., inter-
sections or differences) are performed such that no two primitives
have intersecting boundaries. This guarantees that min/max-based
SDF evaluation produce exact SDFs.

Beyond improving accuracy for morphological operations, Poly-
Curve conversion also facilitates optimization. The original symbolic
representation may lack sufficient degrees of freedom to reduce loss
terms effectively. In contrast, PolyCurves provide direct, parame-
terized control over geometric elements, improving convergence
during optimization.

1.3 Authoring Interface

We construct MXG, programs for each joint using a custom in-house
node-based visual programming interface, shown in Figure 2. The
interface exposes symbolic construction of extrusion profiles via
basic geometric primitives and 2D CSG operations. Though minimal
in design, it supports parametric control and real-time feedback.

Internally, each expression is compiled into GLSL shader code
and rendered using ray marching—enabling direct visualization
without conversion to triangle meshes. Our renderer builds on Inigo
Quilez’s ShaderToy pipeline, allowing fast previews of complex joint
geometries.

While the current interface is targeted at expert users, we view it
as a foundation for broader tooling. Making this system usable by
non-experts remains important future work.

2 Details: Restoring Tight Coupling
2.1 Fixed Interface Constraint in Equivalence Slice Sets

Our optimization process operates slice-by-slice, but many slices
are redundant in their contribution to the coupling loss. To reduce
computational cost, we identify a compact set of representative
slices that together cover the lateral surface of the joint. We refer
to this set as the equivalence slice set. Each slice is selected from a
set of planar extrusions that share tool direction and overlapping
coupling regions.

However, not all interfaces are optimized simultaneously. Inter-
faces with extrusions from non-aligned directions—i.e., those not be-
longing to the current slicing direction—are treated as fixed. Figure 2
(a,b) shows examples of such non-aligned interfaces (highlighted
with lines) which are held constant during a particular slice-aligned
optimization stage.

To preserve surface continuity at these boundaries, we enforce
a strong boundary loss that penalizes deviation from the current
surface geometry. This effectively treats the extrusions from other
directions as fixed walls, guiding the optimization toward solutions
that remain compatible with them.
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Algorithm 1 Optimization from MXG, Program to MXG, Program

Require: MXG Program P, target drill radius r
1: for each direction n do
2: Identify extrusion fields aligned with n
Sample slicing planes orthogonal to n
Group extrusions into equivalence sets {Sy, ..., Sk}
for each equivalence set Sy do
Freeze misaligned boundary constraints
fort=1to T do
Increase dilation rate ry < schedule(t)
Sample points on dg & dC; on each slice
10: Compute total loss Liotal
11: Update g; parameters via gradient descent

12: return Final MXG, Program %,

2.2 Optimization

Algorithm 1 summarizes the full pipeline used to optimize MXG pro-
gram to its fabricable MXG, form.

None of the algorithm’s steps require manual input. Extrusion
fields aligned with a sampled direction n are detected via their dot
product with n (step 2). Slices are then generated at regular intervals
along this direction as intersections between the fields and planes
at the sampled positions (step 3). Finally, to form equivalence sets,
we assign each slice a signature based on the extrusions it intersects
with (each slice’s signature is the set of signatures of the extrusions
it intersects with) and group slices that share the same signature to
form the equivalence sets (step 4).

Sampling points on Part contours dC;. : Let &; be an extrusion
aligned with the slicing plane zi, defined via a 2D signed distance
function g; : R? — R. Its dilated contour C; is defined by the r-
level set: C; = {x | fi(x) =r}. Now, f; is constructed from boolean
compositions over PolyCurve primitives—closed curves composed
of line and arc segments. Therefore, we can sample points x, € 9C;
in a differentiable way using a three-step approach:

(1) Offset curve primitives: Sample points on each line and arc
segment of the polycurve and offset them outward along the
normal by distance r.

(2) Handle corners: At each vertex v; of the polycurve, generate
a circular arc of radius r and sample along it.

(3) Contour filtering: Reject any point x for which f;(x) # r,
ensuring that retained samples lie on the true offset contour.

This sampling strategy avoids constructing a closed-form expression
for the offset curve and remains fully differentiable with respect to
the parameters of f;.

Per-part 2D Signed Distance Field. Given a sample x;, € 9C;(zy),
we compute its signed distance from the 2D projection of another
part P? in the same slice plane. This part is represented as P’ (zz) =

M(zx) — U, &;(zx). Since all components—M(zx) and E;(zx)—are
represented as signed distance functions (SDFs), we construct a
pseudo-SDF for P’ (z;) using min/max composition. The distance
from part P’ (z;) can then be evaluated as: SDFps (x¢). Although
this pseudo-SDF may deviate from the true Euclidean SDF away
from the boundary, it matches closely near the zero-contour, where
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Fig. 3. Threshold sensitivity analysis. Left: Exact Millability (% M) of the
ODF method across varying distance thresholds. Trends remain consistent
across a wide range, confirming that the results in the main paper are not
sensitive to specific parameter choices.

Un-millable Shape despite
valid curvature

Fig. 4. For millability of a given shape with a drill bit of radius r, constraining
the boundary curvature to be less than 1/r is insufficient.

our optimization is concentrated. We provide additional discussion
and analysis in the supplementary.

Occupancy Preservation Loss. We define occupancy as a contin-
uous field estimated using the signed distance function SDFp for
each part P. Let O(x) be the binary occupancy of the original shape
(pre-optimization), and let Op(x) denote the soft occupancy field of
the optimized part at point x, derived from its SDF using a sigmoid
activation:

0p(x) = o(~a - Dp(x)), ®)

where a controls the sharpness of the transition. We then define
the occupancy loss as:

. 2

Lo = ) (O0(x) - 0(x)) @

xX€EG

where G is a uniform grid of sample points within the coupling
volume. This loss encourages the optimized parts to remain close
to their original geometry in both shape and extent, acting as a
regularizer on the optimization.
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Fig. 5. Threshold sensitivity analysis. Right: Coupling Success Rate (C;)
across the same thresholds. Trends remain consistent across a wide range,
confirming that the results in the main paper are not sensitive to specific
parameter choices.

2.3 Alternate Approaches

We considered two alternate strategies for generating millable,
tightly coupled geometries, but found them either insufficient or
impractical in our setting.

Iterative ODF. One possible approach is to alternate morphologi-
cal opening with Diff-Flip updates, progressively restoring coupling
after each step. However, in practice, this method encounters major
hurdles. First, most 2D boolean libraries lack robust support for
polycurve representations involving both lines and arcs, making
repeated set operations error-prone. Even with rasterized occu-
pancy grids and morphological operations, the procedure becomes
unstable after just a few iterations. Moreover, convergence is not
guaranteed, and thin features are often lost due to over-erosion.
While simple in principle, this approach fails to yield consistent or
controllable results.

Curvature Constraint. Another approach can be to constrain the
curvature of 2D contours used in subtractive profiles. Since flat-end
tools cannot produce sharp turns, one might attempt to ensure that
the curvature of all profile paths remains below 1/r, where r is the
milling tool radius. When a contour is at the interface of two joints,
we can then constraint the absolute curvature to be less than 1/r.
While this condition is necessary, it is not sufficient: a curve may
have bounded curvature but still violate millability if opposing path
segments come too close. Figure 4 shows a counterexample where
the curvature constraint holds, yet the tool cannot pass through due
to local underclearance. Millability imposes global constraints on
offset distance, not just local curvature bounds.

One might attempt to strengthen the curvature condition by also
enforcing a minimum local thickness, requiring that opposing seg-
ments of a contour remain at least one tool diameter apart. However,
implementing such a rule is non-trivial: it demands reliable detection
of thin regions and careful reshaping to increase clearance without
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Fig. 6. The five different types of milling procedures used to fabricate the eight physical outputs in Fig. 15 of the main paper.

altering intended contact geometry. Moreover, for joints involving
more than two parts, it is unclear how curvature and thickness

bounds should be formulated across several interacting boundaries.

These challenges limit the practicality of a curvature-plus-thickness
strategy and motivate the global offset-distance formulation adopted
in our method.

2.4 Optimization and Implementation Details

We implement our optimization pipeline in PyTorch, using the
AdamW optimizer with a learning rate of 0.003. Each slice-level
optimization is run for 250 iterations, and we select the iteration
with the lowest boundary loss as the final result. We ran all our
experiments on an Alienware workstation equipped with a Intel i9
11900K CPU, a Geforce RTX 3090 GPU and 64 GBs of DDR4 RAM.

Prior to optimization, we convert all input extrusion profiles
to non-intersecting polycurve representations. Due to occasional
instability in boolean operations over polycurves (e.g., unresolved
self-intersections or missing arcs), we manually corrected a small
number of cases. These corrections apply only to the initial geometry
and do not affect the optimization procedure. Additionally, for two
joints in our dataset, we adjust the threshold used for detecting
coupling boundaries due to noisy overlaps in the manually authored
input geometry.

For joint assemblies involving three or more parts, we observe
instability in the Mp gradient when a point on one milling path
lies near multiple opposing paths. To mitigate this, we introduce a
weighting scheme that downweights gradient contributions from
such ambiguous regions. Specifically, we compute an entropy-based
score over the top-k nearest opposing points and suppress gradients
where the entropy exceeds a threshold, indicating poor localization

of a unique coupled path. This improves convergence and avoids
incorrect updates due to competing path associations.

3 Evaluation

Figure 3 plots Exact Millability (%M) for ODF as a function of the
distance threshold used to verify the Minkowski condition. Figure 5
shows the corresponding Coupling Success Rate (C;) across thresh-
olds. Together, these plots demonstrate that the trends reported in
the main paper are robust and not the result of hand-tuned thresh-
olds.

4 Dataset

Our dataset consists of 30 traditional integral joint designs, each
modeled parametrically using our MXGy representation. These para-
metric programs allow for continuous variation in dimensions, pro-
portions, and milling configurations—enabling the synthesis of a
much larger family of design variants from each base joint.

We plan to expand the dataset to include additional designs from
historical catalogs and contemporary applications. Figure 8 provides
an overview of all joint designs currently included in the dataset.

5 Details of the Physical Fabrication Process

We fabricated eight joints using a 3-axis CNC machine. The refer-
ences (a)-(h) that follows refers to these physically fabricated joints
(refer to in fig. 15 in the main paper). Joints (a) Koshikake Ari Tsugi
and (b) Kime Kata Tsugi were fabricated in the most straight-forward
manner, without repositioning and in flat orthogonal positions (fig. 6-
I). For joints (c) Kiguchi Ari and (d) Shimigiri Daimochi Tsugi, one
part each were fabricated in a vertical orthogonal position (fig. 6-II).
Joint (e) Sumi Niho Kama Tsugi was positioned at a 45 degree angle
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to achieve the diagonal cut. To reliably position the material at the
45 degree angle, we first milled out a jig, and then positioned ma-
terial there before milling (fig. 6-1II). Joint (f) Okkake Daisen Tsugi
was repositioned to accommodate the milling of holes facing in a
different direction from the main geometries (fig. 6-IV). For this
joint, we first fabricated the two main parts. Then we assembled
them, and cut out the holes for the plugs in the assembled state.
In this way, there is no loss in fabrication precision in terms of
the tightness of the coupling despite the repositioning—even if the
repositioning is slightly inexact, the holes in the two different parts
will still be perfectly aligned because there are cut together. Joint
(g) Kanawa Tsugi requires a different type of repositioning, namely,
millings from three directions per part (fig. 6-V). This process is
more error-prone, so fabrication with a 4-or-more axis CNC ma-
chine would have been preferred if we had had access to such a
machine. Nonetheless, we managed to fabricate a functional joint
with our 3-axis machine setup by careful repositioning.

The CNC machine we used are of the brand Shopbot and model
Desktop MAX with Aluminum T-Slot Deck. The milling paths were
created by importing meshes (*.stl files) of our system outputs to
the software VCarve, and then generating roughing tool paths with
clearance set to 0.0. To create a small tolerance of the joint, we set
the milling bit size to slightly (about 0.05 inches) smaller than the
actual mill bit size (1/4 inch). This will result in a slight over-cut, and
can the amount can be adjusted depending on the desired tightness
of the joint.

6 Additional Results

Expanding the Design Space. Our method accommodates complex
joint configurations that lie outside the scope of prior systems. The
use of general CSG-like 2D expressions enable us to cover a wider
spread of designs. Furthermore, for certain joints, multi-directional
milling is critical to ensure that tight coupling is feasible. Figure 7
shows such a joint. While fabrication of individual parts with a
single subtractive operation is feasible, it results in shapes that can-
not be coupled, despite optimization. In contrast, with two oblique
subtractions, we can generate a design that is millable and tightly
coupled (after optimization).

7 Frequently Asked Questions (FAQs)

During review, several thoughtful questions were raised about our
approach; we summarize them here for clarity.

Does the method require substantial manual modeling? Some man-
ual input is needed because no dataset of CNC-adapted traditional
joints exists, making data-driven automation infeasible. Moreover,
joint design involves subjective choices—such as where to allow
small milling artifacts—that benefit from designer control. Our inter-
active editor streamlines this process by enforcing millability while
preserving flexibility. Future work will explore partial automation
of common edits and a user-study evaluation.

Is the approach limited to simple geometry or assemblies? Tradi-
tional joinery was historically shaped with planar tools such as
chisels and saws, and rarely involves free-form 3D surfaces or elab-
orate multi-stage assemblies. Our method targets this regime and
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Original joint design

N

Single directional milling

Multi-directional milling

Fig. 7. For certain joints, multi-directional milling is critical to ensure that
tight coupling is feasible. While fabrication of individual parts with a single
subtractive operation is feasible, it results in shapes that cannot be coupled,
despite optimization. In contrast, with two oblique subtractions, we can
generate a design that is millable and tightly coupled (after optimization).

does not attempt to cover joints requiring sculpted surfaces or com-
plex assembly choreography.

In Fig. 4(c), why are some joint boundaries rounded while others
remain sharp? We apply a morphological opening with radius r to
the subtraction region. This guarantees millability but differs from
uniform filleting: only concave corners inside the removal region
(yellow) are rounded, while other edges remain unchanged.

Is the method specific to 3-axis CNC milling? The geometry pro-
duced by our algorithm is compatible with 4- and 5-axis mills. We
emphasise 3-axis setups because they are widely available in stan-
dard woodworking shops, while higher-axis machines can execute
the same extrusions with fewer reorientations.

Why assume a single cutter radius? Could multiple tools improve
efficiency? Our formulation adapts geometry for the smallest finish-
ing radius, ensuring tight coupling and clearance. Standard prac-
tice—roughing with larger cutters and finishing with a small tool—is
fully compatible with this geometry and supported by existing CAM
software; our focus is on geometric correctness, not minimising ma-
chining time.

Does the approach guarantee global accessibility for the cutter?
Every subtraction is constructed as a semi-infinite extrusion along
a fixed direction (Supplementary Section 1), which guarantees a
straight-line tool path along that direction, assuming feasible fixtur-
ing.
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Ari Kata Tsugi Ari Tsugi Daimochi Tsugi Isuka Tsugi Koshikake Ari Tsugi

Koshikake Mechigai Koshikake Mechigai

Ari Tsugi Kama Tsugi Kanawa Tsugi Mechigai Tsugi Noge Tsugi

Shiho Ari Tsugi Shiho Ari Tsugi Sumi Nimo Chiri Kogara

Type 2 Type 3 Shiho Ari Tsugi Kama Tsugi Sao Shachi Tsugi Kumi Tsugi

Kakushi Arigata
Kumi Tsugi

Koshi Kake Ari
Aikaki Tsugi Otoshi Shugichi

Koshitsuki Jyuji

Finger Joint Kiguchi Ari Kama Hozo Kumi

Ken Tome Tasuki Gake Uwaba Tome Sashi Awase Shingiri Daimochi Suberi Hozo
Hozo Tsugi Watari Ago Toshi Hozo Tsugi Komisen Uchi Tsugi Sashi

Fig. 8. Our Full dataset of 30 Joints. This dataset supports evaluation, benchmarking, and further research into CNC-fabricable joinery.
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