
Supplementary Document for

ParSEL: Parameterized Shape Editing with Language

ADITYA GANESHAN, Brown University, USA

RYAN Y HUANG, Brown University, USA

XIANGHAO XU, Brown University, USA

R. KENNY JONES, Brown University, USA

DANIEL RITCHIE, Brown University, USA

CCS Concepts: • Computing methodologies → Computer graphics;
Neural networks; Natural language generation.

Additional Key Words and Phrases: shape editing, parametric editing, large
language models, computer algebra systems, neuro-symbolic, program syn-
thesis

1 INTRODUCTION

In this document, we present additional details regarding our system.
First, we provide a brief overview of the videos included in the
supplemental material. Next, we describe our editing system ParSEL
in Section 3, including the pre-processing and post-processing steps.
Section 4 provides additional details regarding Analytical Edit
Propagation, and Section 5 provides additional details regarding
our LLM prompting workflow. Finally, Section 6 provides details
regarding the experiments presented in the paper and Section 7
presents common failure cases.

2 QUALITATIVE VIDEOS

We provide the following videos in the supplemental materials:
(1) The set of videos used in our perceptual study, located in

./videos/perceptual_study.
(2) A video titled real_time_shape_variations.mp4, which

demonstrates how analytical edit propagation enables real-
time exploration of shape variations. This is contrasted with
a prior approach that uses online-edit propagation, resulting
in a laggy user experience.

(3) A video titled live_proxydural_modeling.mp4, which shows
our system being used to create a proxydural model of a 3D
asset.

3 PARAMETERIZED SHAPE EDITING DETAILS

3.1 Shape Abstraction

3.1.1 Inter-part Relations. As discussed in the main paper, our sys-
tem considers two types of inter-part relations, namely Attach-
ment relations and Symmetry relations. We consider multiple sub-
types for each of these relations, which are presented in Table 1.

First, we use three types of Symmetry relations: ReflectionSym-
metry, RotationSymmetry, and TranslationSymmetry. Each of
these relations introduces constraints between the parts based on

Authors’ addresses: Aditya Ganeshan, adityaganeshan@gmail.com, Brown University,
USA; Ryan Y Huang, ryan_y_huang@brown.edu, Brown University, USA; Xianghao
Xu, xianghao_xu@brown.edu, Brown University, USA; R. Kenny Jones, russell_jones@
brown.edu, Brown University, USA; Daniel Ritchie, daniel_ritchie@brown.edu, Brown
University, USA.

the parameters of the relation, allowing us to detect when a relation
is broken.

Secondly, we model 4 types of inter-part Attachment relations,
namely PointAttachment, LineAttachment, FaceAttachment
and VolumeAttachment. These attachments constrains the rel-
ative movement between parts, with the constraints being more
restrictive as we move from Point to Volume. LineAttachments
are typically useful for modelling attachment between parts which
‘widen’ together, such as a chair’s seat and its back. FaceAttach-
ments are useful for modelling attachment between parts which
radially scale together, such as a TV’s display and its Frame. Finally,
VolumeAttachments is suitable to model the attachment between
parts which must always be edited in the same fashion (i.e. the only
way to satisfy VolumeAttachments is by having the same edit on
both the parts. While these attachment relations behave in different
ways, they are all modelled using only point attachments, with line
attachment in practice converting into two attachments, face into 4
co-planar points attachments and volume into 8 attachment points.
Note that technically face attachments and volume attachments can
be modelled with just 3 and 4 points attachments respectively as
well.

The most important detail is that all these relations, the symme-
try relations as well as the attachment relations, are automatically
derived, and this process is described in section 3.3.

3.1.2 Virtual Part Hierarchy. The parts of man-made objects are
often hierarchical in nature - parts such as ‘back‘ can often be com-
posed of multiple sub-parts such as ‘back-support-bars‘ ‘back-top-
bar‘ etc. However, performing edit propagation while considering
such hierarchy becomes increasing complicated and lead to unde-
sirable edits (such as uniform scaling of a set of parts when instead
translating a few sub-parts while scaling others is preferable). Prior
methods [12] do offer some solutions however, we avoid modeling
hierarchy so that we can avert introducing additional complexity
to analytical edit propagation. This can however be explored in the
future.

Therefore, all parts in the system are considered to be at the leaf-
level with no hierarchy. We only allow hierarchies in one cases,
namely in the presence of RotationSymmetry or Translation-
Symmetry relations. When such relations are present, we instantiate
a virtual parent part containing all the instances. This allows use
to edit symmetry relations with edit operations such as Change-
Count and ChangeDelta. When we create such virtual parts, we
also create Attachment relations between the virtual part and the
other parts.

197:2 • Ganeshan and Huang, et al.

Relation Instantiation Constraint

ReflectionSymmetry ref_sym(H, origin=o, normal=n) | |H𝑗 − H𝑖 − 2 ((H𝑖 − o) · n) n| |∞ < 𝛿 ∀H𝑖 ,H𝑗 ∈ H
RotationSymmetry rot_sym(H, point=o, rot_mat=R) | |H𝑗 − o + R𝑛 (H𝑖 − o) | |∞ < 𝛿 ∀H𝑖 ,H𝑗 ∈ H, 𝑛 = 𝑖 − 𝑗

TranslationSymmetry trans_sym(H, delta=d) | |H𝑗 − (H𝑖 + d) | |∞ < 𝛿 ∀H𝑖 ,H𝑗 ∈ H, 𝑛 = 𝑖 − 𝑗

PointAttachment point_attach(A, B) | |𝑀𝑎H𝑖 −𝑀𝑏H𝑗 | |∞ < 𝛿 ∀𝑎𝑛 ∈ A, 𝑏𝑛 ∈ B
LineAttachment line_attach(A, B) | |𝑀𝑎𝑛H𝑖 −𝑀𝑏𝑛H𝑗 | |∞ < 𝛿 ∀𝑎𝑛 ∈ A, 𝑏𝑛 ∈ B, {𝑛 ∈ Z | 1 ≤ 𝑛 ≤ 2}
FaceAttachment face_attach(A, B) | |𝑀𝑎𝑛H𝑖 −𝑀𝑏𝑛H𝑗 | |∞ < 𝛿 ∀𝑎𝑛 ∈ A, 𝑏𝑛 ∈ B, {𝑛 ∈ Z | 1 ≤ 𝑛 ≤ 4}
VolumeAttachment vol_attach(A, B) | |𝑀𝑎𝑛H𝑖 −𝑀𝑏𝑛H𝑗 | |∞ < 𝛿 ∀𝑎𝑛 ∈ A, 𝑏𝑛 ∈ B, {𝑛 ∈ Z | 1 ≤ 𝑛 ≤ 8}

Table 1. Inter-Part Relations: We enlist the different inter-part relations supported in our structured shape representation. In the first column, we annotate

the type of each relation. The second column depicts the pseudo-code used to initialize these relations, providing reference for the relation parameters. Finally,

the last column depicts the constraints that are enforced as a consequence of each relation. Note that for the Attachment relations,𝑀𝑖 denotes the harmonic

coordinates [2] for the corresponding point 𝑖 .

Specifically, when considering virtual part, we either allow edits
on the virtual part - this allowsmodelling edits on all the instances to-
gether as well the relation edits (ChangeCount andChangeDelta).
To edit parts within a symmetry relation, such as when scaling only
the central back slat, we automatically turn off the virtual part (and
its attachment) reducing the shape back to a hierarchy-less graph.

3.2 Parameterized Shape Editing DSL

As described in themain paper, our DSL provides atomic operators to
perform parameterized edits on parts as well as relations in the input
3D asset. We enumerate these operators in Table 2. Furthermore, we
also present the algebraic form conferred to the operand by these
operators.
As shown in the table, our DSL includes two relation editing

operation, namely ChangeCount and ChangeDelta. These ed-
its affect the number of instances, or the spacing between them
in TranslationSymmetry and RotationSymmetry relations. We
apply these operators in two modes, (i) a Top-Down mode, where
the relation configurations (such as count and spacing) are derived
from the parent part (i.e. the a virtual part containing all the in-
stances in the symmetry group). This allows edits where the scaling
of the parent virtual part affects the count or spacing between the
instances. and (ii) a Bottom-Upmode, where the parent virtual part’s
shape is derived from the relation configuration. To achieve this
functionality, we first over-parameterize the relations, for instance,
TranslationSymmetry is represented by 5 variables its start-point,
mid-point, end-point, count and delta-vector. This allows us to flex-
ibly explore edits on any of these features (such as changing the
count be shifting the end-point). Secondly, we replicate these points,
marking them as points of the virtual parent, and create virtual
Attachment relation between the points and their virtual parent
counterparts. For instance, we create an Attachment relation be-
tween the start-point of the relation and the start-point in the virtual
parent part. This allows us to analytically consider how the parent
should be updated as the relation is updated, or vice-versa. Simi-
larly, RotationSymmetry relations are also over parameterized by
symbolic expression for its arch-length, radius, count, angle which
are then used to communicate edits between the parent virtual part,

and the relation. Note that we currently only support editing of
closed loop RotationSymmetry groups.

3.3 Pre-Processing Input 3D Assets

Given a 3D mesh as input, we utilize a prior work [11] to infer
the reflection, translation and rotation symmetries in the shape.
This approach performs ICP between mesh parts with the same
label to detect these relations. We alter the algorithm slightly to
fit our needs. Specifically, we only allow translation and rotation
symmetry on part-sets with more than 2 parts, and only consider
axis aligned reflection symmetry relations. We also avoid consider-
ing hierarchies of such symmetry groups (for instance, translation
symmetry of rotation symmetries) as such hierarchies tend to occur
less frequently in the man-made objects we considered.

To create the attachment relations we utilize the overlaps between
parts. First, we ascertain if two parts have an attachment relation by
checking if points sampled on one part are contained in the other
part’s bounding box (and vice versa). Once an attachment is detected,
we must now decide the type of attachment between the parts.
Attachments are classified as PointAttachments, LineAttachment,
FaceAttachment or VolumeAttachment based on the number of
shared planes of intrinsic symmetry between the part and their
intersection region.

This is computed by the following process:
(1) First, we generate a point cloud of the intersection region

by sampling points on one part’s surface and rejecting those
which are outside the other part’s bounding box. This pro-
cess is repeated for both the parts.

(2) Next, for each part as calculated the intersection-shared sym-
metry plane count. We consider the number of intrinsic sym-
metry planes of its bounding box about which the intersec-
tion point cloud is symmetric as well.

(3) The symmetry order of the attachment is assigned as the
minimum of the intersection-shared symmetry plane count
of both the parts.

We permit one exception - if a part is contained within another
part, we mark the attachement between them with the highest

Supplementary Document for

ParSEL: Parameterized Shape Editing with Language • 197:3

Edit Operators Instantiation Algebraic Form

Translate translate(H𝑖, dir=n, amt=𝑥) H𝑖 (𝑥) = H0
𝑖
+ 𝑥 · n

Rotate rotate(H𝑖, orig=o, axis=n, amt=𝑥)
R(𝑥) = cos(𝑥)I + sin(𝑥) [n]× + (1 − cos(𝑥))nn𝑇

H𝑖 (𝑥) = o + R(𝑥) (H0
𝑖
− o)

Scale1D scale_1D(H𝑖, orig=o, dir=n, amt=𝑥) H𝑖 (𝑥) = o + 𝑥 (n · (H0
𝑖
− o))n + (H0

𝑖
− o)

Scale2D scale_2D(H𝑖, orig=o, normal=n, amt=𝑥)

H𝑐
𝑖
= H0

𝑖
− o

H𝑝

𝑖
= H𝑐

𝑖
− (H𝑐

𝑖
· n)n

H𝑖 (𝑥) = o + (1 + 𝑥)H𝑝

𝑖
+ (H𝑐

𝑖
· n)n

Scale3D scale_3D(H𝑖, orig=o, amt=𝑥) H𝑖 (𝑥) = o + (1 + 𝑥) (H0
𝑖
− o)

Shear shear(H𝑖, orig=o, normal=n, dir=d, amt=𝑥)

H𝑐
𝑖
= H0

𝑖
− o

S = I + 𝑥d ⊗ n
H𝑖 (𝑥) = o + S𝑇H𝑐

𝑖

ChangeCount change_count(𝑆𝑦𝑚𝑅𝑖, amt=𝑥) -

ChangeDelta change_delta(𝑆𝑦𝑚𝑅𝑖, amt=𝑥) -

KeepFixed keep_fixed(H𝑖) H𝑖 (𝑥) = H0
𝑖

Table 2. DSL commands: We enlist the parameterized editing operators provided in our DSL. Each command is parameterized by a variable 𝑥 , which controls

the edit magnitude. We omit the algebraic form of the ChangeCount and ChangeDelta, the two operators which are applied on symmetry relations due to

their complexity. Note that the initial 6 operators can also be applied only on part features such as a face, edge or a vertex, enabling non-affine transforms.

symmetry order (i.e. 3). The attachment relations are then directly
derived based on the symmetry order, with order 0 mapping to
PointAttachment and 3 mapping to VolumeAttachment.

3.3.1 Extending Part Labels. Additionally, we automatically en-
hance each part’s label with verbal directional phrases such as
"front" and "back" to capture its relative positioning among other
instances with the same label. These phrases help the LLM discern
which instance to edit when the edit intent itself contains directional
specifications (for instance, in ‘scale the front legs.’).
To perform this task, we first compute the relative placement

vectors for each part within a shared label group (such as all parts
containing the label ’leg’). The relative placement vector is computed
w.r.t. the center of all the parts. Then based on the alignment of
these vectors with the cardinal direction we allot them terms such
as ‘front’, ’back-right’ etc. which are then used to extend the labels.

When a group has more the 2 parts, we also separately identify if
they are approximate arranged in a rotational pattern, or a straight
line. This is done by calculating the angle created between the parts
and the center. Based on this different set of directional phrases are
used. For instance, 4 legs along a line going left to right are assigned
the labels ‘left’, ‘left-center’, ‘right-center’, ‘right’, whereas if they
are approximately rotationally arranged, they are given the labels
‘left-back’, ‘left-front’, ’right-back’, ’right-front’. Groups with more
than 5 labels (such as rungs in a bed’s ladder) are simply provided
numeric indices as the directional phrase.
We found this approach provided correct labels for the majority

of shapes considered, requiring minimal manual adjustment to the

labels, particularly when parts are arranged in a non-trivial pattern.
We emphasize that this is only implemented to help the LLMs and
has no affect on our edit propagation algorithm. In future, we expect
this technique to be replaced by methods which leverage founda-
tion models to consider inter-group part arrangements similar to
PartSLIP [5].

3.4 Post-Processing Edited 3D Assets

3D assets are edited in ParSEL with part-level deformations, and
symmetry group modifications. Both of these operations can lead to
the creation of holes in the 3D asset’s mesh, particularly when the
user sets a high edit magnitude. In Figure 1 (c) we show this in effect,
where deforming the legs of a chair results in gaps between the chair
legs and the seat. Therefore, after editing with the parametric editing
programs, certain 3D assets require additional post-processing to
improve edited assets quality.
Note that this artifact is also present in prior edit propagation

methods. Prior approach [12] employ an intricate approach, where
surface-based deformation approach [4] is used with virtual edges
constructed between the points and the surface feature curves ex-
tracted using [8]. However, it doesn’t resolve all mesh-related issues.
We instead use a Surface Reconstruction based method to correct
such artifacts. Given an edited 3D asset, we perform the following
steps:

(1) First a dense point cloud is sampled on the deformed mesh
(with 200000 points) using Poisson disk sampling.

(2) We then employ screened Poisson surface reconstruction [3]
to reconstruct a 3D mesh from the point clouds.

197:4 • Ganeshan and Huang, et al.

(a) Input 3D Asset (b) Edited 3D Asset (c) Post-processed 3D Asset(c) Mesh holes due to edits (d) Mesh Clean-up with SPR

Fig. 1. Perceptual Study Interface: Extreme deformation under our system can cause gaps to appear in the 3D mesh. With the post-processing we describe

in Section 3.4, which employs screened Poisson surface reconstruction (SPR) [3], these gaps can be fixed although with a detrimental effect on the shape’s

material.

(3) This mesh can often be dense, hence we perform mesh deci-
mation using Quadric error based edge collapse.

(4) Next, we partition thismesh into part-levelmesh fragments.To
perform this, first we extract all the vertices of the original
deformed mesh, and simply transfer the label from these
vertices to the reconstructed mesh vertices using a nearest
neighbor lookup. The part-labels are then used to partition
the reconstructed mesh into fragments.

(5) Finally, we transfer the material from the original part to the
reconstructed part mesh. We transfer the vertex UV coordi-
nates from the original (deformed) mesh to the reconstructed
mesh using nearest neighbor lookup as well.

The results of this process are shown in Figure 1 (d). We found
this approach to be effective at filling small-medium gaps between
the deformed parts with nominal reduction in the 3D asset’s quality.
However, similar to prior approaches [12], we emphasize that

this approach is only a stop-gap, and only serves as a means to
demonstrate the effectiveness of analytical edit propagation. Fixing
holes in edited meshes is an interesting research direction in itself,
with many works [1] specifically targeting hole correction. In future,
we hope to leverage such approaches to improve the output from our
method to maintain the quality of the 3D asset after deformation.

4 ANALYTICAL EDIT PROPAGATION DETAILS

4.1 Pseudo-code for Analytical Edit Propagation

We present the pseudo-code for our system in Algo. 1, Algo. 2 and
Algo. 3.

Algo. 1 provides the pseudo code for the overall editing process.
First, the LLM is prompted to return the relation-validity, seed-edit
and type-hints. Then, we perform Analytical Edit Propagation
given the seed-edit and the type-hints.

Algo. 2 provides the pseudo code for the edit propagation frame-
work used in our system. Note that broken relations are gath-
ered based on the broken constraints (C, listed in 1). The function
get_part_to_edit returns a part that should be edited based on
the broken relations. Following CSP literature, we use the Minimum
Entropy Heuristic (MinE) and select the part with the most relations
(since it is likely to have the least number of constraint satisfying
edits).

Finally, Algo. 3 provides the pseudo code for the Analytical edit
solver. Here, the function cas_solve deploys a Computer Algebra
System Solver [6] to infers function assignments to the symbolic
variable Y that satisfy the constraint equation eq.

4.2 Analytical Edit Solver

In this step, we are tasked with introducing new parameterized
edits which restore and preserve the broken relations across the
input range. As discussed in the paper, our strategy involves search-
ing only over a subset of feasible param assignments. The feasible
params assignments are created using the hexahedron features such
as its face-center, vertices, and local axis directions. To create these
operators, we first collect a set of ‘feasible’ points (the center, face-
center, corners, edge-centers), a set of 27 3D points, and a set of
‘feasible’ directions (the global cardinal directions as well as local
cardinal directions). These feasible points and directions are then
used to create the edit candidates. These edit candidates are then
merged based on the equivalence between the edit expressions they
create. We note that this simple sampling process creates a large set
of edit operators to consider. However, since our Analytical Solving
process is embarrassingly parallel, we are able to search successful
edits in a reasonable duration.

4.2.1 nhbd-edits Parameterization. nhbd-edits address the fact that
often the param require to edit a part may not be derived by one
of its features. Therefore, when all the candidates in E𝑅 fails, we
introduce additional candidates which contain param assignments
which are based on the features of other edited hexahedrons. We
also introduce edit candidates with param assignments based on
the relative arrangement of the two parts, such as when one part is
being scaled, moving the other part along the direction connecting
the two parts is a potential translation edit candidate.

4.2.2 Edit Selection. For each candidate from the edit candidate set
E𝑅 , our analytical edit solver infers plausible functional assignments
to the Amount parameter that create valid parameterized edits, i.e.
edits which restore and preserve all the broken relations (of the part
being edited). This results in a set of feasible edits, from which we
must select the most suitable edit. We now introduce the criterion
employed for this task.

Supplementary Document for

ParSEL: Parameterized Shape Editing with Language • 197:5

Algorithm 1: ParSEL Overview
generate_program (shape, edit_request):

shape = set_sym_relations(shape, edit_request)
init_edit = get_init_edit(shape, edit_request)
edit_hints = get_edit_hints(shape, edit_request)

program = propagate(shape, init_edit, edit_hints)

return program

Algorithm 2: Analytical Edit Propagation

propagate(shape, init_edit):

all_edits, finish = init_edit, false
while !finish:

propagate(all_edits)
broken = gather_broken_relations(shape)
if len(broken) > 0:

part = get_part_to_edit(broken)

edit, unfixed = solve(broken, part)

reject_relations(unfixed)
all_edits.add(edit)

else:
finish = true

clean_up()
return all_edits

At a high level, we select the edit which minimizes ARAP defor-
mation energy [10], while maximally preserving the edited part’s
intrinsic symmetry planes. First, we remove all the edit candidates
which result in a high ARAP energy. Next, each edit, based on
its type and param, is assigned the number of intrinsic symmetry
planes of the hexahedron it retains. For instance, edits such as trans-
lation, rotation, isotropic scaling do not affect any symmetry planes
- the hexahedron is symmetric about axially aligned planes passing
through its center even after being edited. On the other hand, edits
such as Face Scaling disrupt this symmetry, and hence retain a lower
number of intrinsic symmetry planes. From these edits we select the
set with the highest number of retained symmetry planes. Within
this set, we simply select the edit which results in the least amount
of ARAP energy.
We note that selecting directly based on ARAP energy works in

most cases, however considering symmetry planes helps in a few
cases. This is mainly because when editing shapes, the user-desired
edit may not necessarily match the min arap energy candidate -
for example, most edits contain stretching which despite higher
arap-energy cost can actually be the preferred edit in many cases.
The consideration of both ARAP energy and intrinsic symmetry
planes however results in a criterion closer to human preference.

5 PROMPTING DETAILS

We provide the prompts we utilize for our system in the supplemen-
tal material. In total, our system employ 4 prompts, one each for
inferring the seed-edit and type-hints, and two for relation validity,
one customized for ReflectionSymmetry and the other for Rota-
tionSymmetry and TranslationSymmetry. We found that having

Algorithm 3: Analytical Edit Solver

solve(broken, part, edit_hints):

Y = new_var()
solution_set, scored_solutions = {}, {}
candidates = get_candidates(part, edit_hints)
constraints = get_constraints(part, broken)
for edit in candidates:

propagate(edit, amount=Y)
for eq in constraints:

solutions = cas_solve(eq, Y)
solution_set.add(solutions)

for sol in solutions:
score = count_satisfying(sol, constraints)
unfixed = get_broken(sol, constraints)
scored_solutions.add((score, unfixed))

if len(solution_set) > 0:
edit, unfixed = get_best(scored_solutions)

else:
edit, unfixed = None, broken

return edit, unfixed

two separate prompts improved the LLM’s ability to correctly infer
the relation-validity. Further, we employ two additional prompts,
one for each of the demonstrated applications.
We follow a common pattern for all the prompts, providing the

following sequence on instructions: (i) the task overview, (ii) the
output specification, (iii) examples, (iv) verbal shape description and
edit request (v) steps for performing the task and (vi) guidelines.
That last detail plays a crucial role in improving the LLM’s ability
to perform the tasks. Figure 2 depicts the prompt provided to the
LLM to infer the seed-edit. Note that to conserve space, we provide
only snippets of various sections (as marked by the ellipses).

6 EXPERIMENTAL DETAILS

6.1 Dataset

We construct our datasets by sourcing shapes from PartNet [7] and
CoMPaT3D++ [9]. We provide more details of the dataset here.
First, we present the statistics of the parsed structured shape

representation derived from the mesh models. Table 3 reports these
statistics. We note that our dev-set containing shapes from Part-
Net contains a wider array of shapes sizes than the test-set created
with CoMPaT3D++. Furthermore, since shapes in PartNet are often
labeled at a finer level, more symmetry relations such as transla-
tion and rotation are detected in them. In contrast, CoMPaT3D++
presents a wider array of shape categories. Finally, we observe that
CoMPaT3D++ models are closer to real-world 3D assets, and as a
result they (1) Often have more intricate Attachment relations,
and (2) Tend to use closed surface parts, which consequently helps
us avoid the post-processing pipeline discussed in 3.4.

We have included all the edit request used for the both the datasets
in the supplementary materials. Furthermore, the provided percep-
tual study videos also show the shapes with their corresponding edit
requests. As can be seen in the edit requests, the use of LLMs allows

197:6 • Ganeshan and Huang, et al.

Task
Description

Shape API

Edit API

Output
Specification

In-Context
Examples

Task
Reminders

Current
Shape

Task

Given a 3D shape description, and a user's edit request in natural language, specify the primary edit using the following Editing API.

Shape Description

The input shape will be composed of 3D Cuboids with semantic annotation. You will be given a shape-hierarchy tree, which indicates
the relationship between the cuboids. To access a particular part or its features (such as a face or an edge) use to following API:

DIRECTION_STRINGS = ["front", "back", "left", "right", "up", "down"]

class Part:
 """A class representing a part of a shape, capable of containing nested sub-parts."""

 def get(self, label: str) -> Part:
 """
 Retrieve a sub-part using its label.

 Parameters:
 label (str): The label of the sub-part.

 Returns:
 Part: The sub-part with the specified label.

 Example:
 >>> shape = Part(...)
 >>> leg_part = shape.get("leg_front_right")
 """

 def center(self) -> Vector:
 """
 Returns the center point of this part's geometry in global coordinates.

 Returns:
 Vector: The center point of the part.

 Example:
 >>> seat = shape.get("seat")
 >>> seat_center = seat.center()
 """

Edit API

The Edit API helps specify part-level edits. You must specify the edit command in a python snippet. Since the current task is to only
specify the primary edit, you will only need to specify one edit command. Refer to the following API to specify the edit command:

class Translate:
 """
 Translate a geometric entity (part, face, or edge) in a given direction.

 Parameters:
 operand (Part|Face|Edge): The geometric entity (part, face, or edge) to be translated.
 direction (Vector): The vector specifying the direction and magnitude of the translation.
 """

class Rotate:
 """
 Rotate a geometric entity (part, face, or edge) around a specified axis.

 Parameters:
 operand (Part|Face|Edge): The entity to be rotated.
 rotation_axis_origin (Vector): The origin point of the rotation axis.
 rotation_axis_direction (Vector): The direction vector of the rotation axis.
 """

Output Specification

Specify the primary_edit variable in python using the API specified above. The primary_edit should be specified in a code
snippet in the following format:

primary_edit = ... # must be created via the API

Examples

To help understand the task better, here are a few examples: Note that part names must be dependant on the shape specification
provided in the prompt. In the following examples we only provide the edit request and the expected primary edit.

Example 1

Edit Request: "I want to rotate the armrests downwards."

Primary Edit

rotate the horizontal component of the armrest.
part = shape.get("arm_rest_horizontal_bar_left")
The origin will be the face center of the back face.
rotation_origin = part.face_center("back")
The direction using right hand rule should be towards the right.
rotation_direction = RightUnitVector()
primary_edit = Rotate(part, rotation_origin, rotation_direction)

Example 2

Edit Request: "I want to raise the seat of the chair upwards."

Primary Edit

part = shape.get("seat_surface")
primary_edit = Translate(seat, direction=UpUnitVector())

Guidelines

1. Analytical Approach: Follow the above instructions step-by-step and explaining your solution along the way.

2. Code Format: Specify the primary edit in a executable Python code snippet, strictly adhering to the specified API format.
Remember to specify only a single primary edit with the primary_edit variable.

3. Function Use: Employ functions like center and face_center to define the primary edit precisely. Do not use sympy,
numpy etc. to create these variables. The amount of the edit will be controlled by the user interface and must not be specified

Current Task

The shape is described as follows:

chair/
 drawers (translation symmetry)/
 drawer_down
 drawer_up
 handles (translation symmetry)/
 handle_down
 handle_up
 horizontal_bottom_panel
 horizontal_top_panel
 leg_left
 leg_right
 vertical_back_panel
 vertical_side_panel_left
 vertical_side_panel_right

The user has the following natural language request: I want to reduce the length of the legs from the top. Scale the backrest when
required.

Please specify the primary edit.

Fig. 2. Overview of the structured prompt provided to the LLM for inferring the seed-edit. The prompt follows a systematic approach, including task description,

shape API, edit API, output specification, in-context examples, and task reminders. To conserve space, only snippets of various sections are shown, as indicated

by the ellipses.

Dataset N. Shapes N. Parts N. Attachment Relations N. Symmetry Relations
Min Mean Max Min Mean Max Min Mean Max

PartNet Lamp 7 5 11.57 30 4 7.00 12 0 1.71 4
PartNet Chair 15 7 16.40 31 2 18.93 42 1 5.60 11
PartNet Table 9 5 12.89 20 3 14.44 41 1 6.22 16
PartNet Storage Furniture 13 12 21.67 48 17 51.83 117 3 8.50 18
PartNet Bed 7 17 44.25 81 31 77.25 110 7 24.88 53

PartNet (dev-set) 51 5 19.5 81 2 31.82 117 0 7.96 42

CoMPaT3D++ (test-set) 50 3 12.5 23 1 19.54 72 0 4.8 14
Table 3. Dataset Statistics: We provide statistics of the two datasets we use. We note that our dev-set, explores a wider range of structural complexity,

whereas our test-set explores a wider range of semantic variations (as it contains shape from 21 different categories).

us to support broader, intricate, nuanced and longer edit requests
as well.

Supplementary Document for

ParSEL: Parameterized Shape Editing with Language • 197:7

"I want to extend the pedestal in the le-right direction

while keeping the back panel as it is.

"I want to make the pedestal wider radially"

Input Shape Ours One Shot LLM

Fig. 3. Perceptual Study Analysis: In a few cases, as shown above, users

preferred One Shot LLM over Ours. We note that this preference is not

caused by a our model’s failure to infer a valid program, but a misalignment

between the system interpretation (perform secondary adjustments) and the

participant’s interpretation (do not perform any secondary adjustments).

6.2 ProgramQuality Metrics

We introduce multiple metrics in the paper to analyse the different
methods from various perspectives. First, we present the detail of the
metrics used for measuring the quality of inferred programs. These
metrics compare the inferred programs against the ‘GT’ program
annotated by a Human-Solver inference process. These metrics are
used to measure quality across three criterion, namely:

6.2.1 Programmatic (J (𝑝𝑟𝑜𝑔)). This metric assesses how closely
the inferred programs match the GT programs. First, we convert
each program statement (or edit operator) into a string signature
consisting of only the type of edit operation, and its operand. Then,
this metric is computed by measuring the Jaccard similarity between
the set of edit signatures derived from the inferred program and the
GT program.

6.2.2 Geometric (D(𝑔𝑒𝑜)). The metric measures the geometric dis-
tance between the shape edited with the inferred programs and the
shape edited with the GT program. First, for both the programs, we
set the user-controlled parameter 𝑥 to a fixed value (0.35). Then,
for each part, we compute the 𝐿2 distance between the hexahedron
vertices deformed by the inferred program, and the corresponding
ones deformed by the GT program. This metric is computed by
summing up these 𝐿2 distances across the program.

6.2.3 Structural (%𝑅𝑒𝑙). This metric quantifies the percentage of
inter-part relations whose state (broken vs. maintained) matches
the relation’s state under the ground truth (GT) program. As all our
relations can be represented as parameterized constraints as well,
we simply check and annotate each relation’s state under the GT

Fig. 4. Perceptual Study Interface: We provide a screenshot of the ques-

tionnaire provided to the participants in our two-alternatives forced-choice

perceptual study. Note that the videos used for this study are provided in

the supplemental material.

program, and the inferred program. This metric is then computed
by measuring the fraction of relations for which the annotations
match. Note that we only consider relations which involve at least
one edited part.

6.3 LLM Accuracy Metrics

Next, we elaborate on the metrics introduced for judging the quality
of the LLM’s output.

6.3.1 𝐴𝑐𝑐 (𝑆𝐸). This metric measures the seed edit accuracy. Simi-
lar to the process conducted for measuring J (𝑝𝑟𝑜𝑔), we derive the
string edit signature of the seed edit inferred by the LLM. If this
seed-edit signature is present in the GT program’s edit signature
set, then we accept the seed edit to be an accurately predicted seed
edit (i.e. 𝐴𝑐𝑐 (𝑆𝐸) = 1).

6.3.2 𝐴𝑐𝑐 (𝑅). This metric measures relation validity accuracy. Dur-
ing the Human-Solver inference process, we record the relations
that the human user disables to enable the edit. 𝐴𝑐𝑐 (𝑅) is then com-
puted by comparing the LLM’s inference for each relation to the
state set by the human user.

6.3.3 J (𝑇). This metric measures the type hint accuracy. This
metric is computed by computing the Jaccard similarity between
the type hints set by the expert user during the Human-Solver
inference process and the type hints set by the LLM. We find that
expert user often set only a minimal set of required type-hints, i.e.
the expert user elides type-hints for parts where the solver inferred
edit (without type-hints) will match the edit type specified by the

197:8 • Ganeshan and Huang, et al.

(a) (b) (c) (d)

Fig. 5. Examples of failure cases in our system. (a) Propagation failure due to incorrect relation propagation, leading to a structurally unsound shape. (b)

Propagation failure caused by unsupported operations, such as scaling with retained translation symmetry. (c) Propagation failure due to numerical precision

errors, resulting in part clipping. (d) LLM parsing failure where the shape was edited but did not follow the edit request which specifies that the front legs

must remain fixed. The corresponding natural language edit request provided to the LLM was "Scale the backrest ... while keeping the front legs as they are".

J (𝑃𝑟𝑜𝑔) (↑) D(𝐺𝑒𝑜) (↓) %Rel(↑)
1.0 0.0 100%

- nhbd 0.85 0.12 95.02%
- breaking 0.77 1.44 89.48%

Naive 0.76 4.32 87.9%
Table 4. Quality of programs inferred by the Solver: Removing nhbd-edits
results in higher geometric distance (D(𝐺𝑒𝑜)), while removing breaking-
edits leads to more structural distance (%Rel). The naive approach that

removes both of these options is the least effective.

edit request. In contrast, the LLM often tends to provide more type
hints. We therefore discount the entries in the LLM inferred type
hints which, though not present in the expert user’s annotation, are
not wrong, i.e. setting these type-hints does not change the solver’s
output.

6.3.4 𝑀𝑎𝑡𝑐ℎ. This metric measures the fraction of input pairs
where all LLM-inferred quantities match human annotations.𝑀𝑎𝑡𝑐ℎ

is set as 1 if and only if all the other metrics 𝐴𝑐𝑐 (𝑆𝐸), 𝐴𝑐𝑐 (𝑅) and
J (𝑇) are measured to be 1.

6.4 Perceptual Study Details

The two-alternatives forced-choice perceptual study presented in
the main paper is conducted with 56 participants, collecting 1642
total judgements. These comparisons are conducted between the
programs inferred by the different methods (One Shot LLM, Ours
Seed Only and Ours) on the 50 (shape, edit request) pairs in our
test-set. We notice that the program inferred by Ours matches those
inferred by the One Shot LLM in 4 of the 50 pairs, and matches the
program inferred by the Ours Seed Only in 14 of the the 50 pairs.
Note that this is not a drawback of our method. Certain edit request
only require a single seed-edit (for instance ’I want to increase the
number of legs of a round table’) making the program inferred by
the three methods match. Similarly, certain edits require no type-
hints or relation validity settings (for instance "widen the chair")

making the program inferred by Ours and Ours Seed Only match.
We remove these cases from our perceptual study to remove the
noise that could potentially arise from including these comparisons.

Figure 4 shows a screenshot of the visual interface the participants
is provided with. We further emphasize that all the comparison
videos, and the anonymized participant preferences are also included
in the supplemental materials.

6.4.1 Additional Analysis. We analyse the (shape, edit-request) in-
put pairs for which a majority of participants preferred the One Shot
LLM over Ours. This occurred in 5 of the 50 input pairs. We present
two of them in Figure 3. We note that this preference is not caused
by any failure of Ours method to infer a valid program, but rather
due to a misalignment between the system interpretation (always
perform secondary adjustments unless specifically asked not to)
and the participant’s interpretation (do not perform any secondary
adjustments unless really required).

6.5 AEP Solver Analysis with ‘GT’ Annotation

Our main draft reports AEP solver ablation where the two features
(use of nhbd-edits and breaking-edits) are removed to measure their
effect on the solver’s performance. To emphasize the importance
of these two features, we also present this analysis with the expert-
user’s ‘GT’ annotations as input. We record the seed-edit, type-hints
and relation-validity set by the expert-user, and infer the correspond-
ing editing programs with the different variants of the solver. This
result is presented in table 4. The metrics show that these features
indeed play a crucial role in the success of the solver, and naively
employ the solver can result in a lot of failure cases.

7 FAILURE CASES

Despite the robustness of our system, we identify some common
failure modes. These failures primarily fall into two categories: Prop-
agation Failures and LLM Parsing Failures.

Supplementary Document for

ParSEL: Parameterized Shape Editing with Language • 197:9

7.0.1 Propagation Failures. These failures occur when, during the
analytical edit propagation, the system fails to infer part-level edit-
ing operations that align with the edit intent. This can happen in
three common ways:

(1) Breaking Relation Errors: When none of the discovered ana-
lytical edits can restore and preserve all the relations of the
edited part, a minimally relation breaking edit is selected.
When multiple edit candidates break a minimal number of
relations, the optimal edit is selected using the criterion de-
scribed in Section 4.2.2. Edit propagation can fail when this
heuristic fails. As shown in Figure 5 (a), this results in edited
shapes that are structurally unsound.

(2) Unsupported Operation Errors: Edit propagation also fails
when the desirable editing operations is not yet supported
by our system. An example of such a failure is depicted in
Figure 5 (b). As the couch is extended, it is desirable to widen
each of the seats, while also translating then accordingly.
Our system fails to perform this edit as simultaneously trans-
lating and scaling each instance in a translation symmetry
is not yet supported.

(3) Numerical Precision Errors: Occasionally, propagation fails
due to numerical precision issues. In Figure 5 (c), a 1D scaling
operation is mistakenly accepted as a feasible edit, leading
to clipping between the object parts.

7.0.2 LLM Parsing Failures. These occur when the LLM fails to cor-
rectly parse and execute the input request. For example, in Figure 5
(d), although the resulting shape is structurally acceptable, the edit
does not adhere to the editing request, which specifies that the front
legs must remain fixed. This demonstrates the occasional failure of
LLMs to properly infer the all the quantities. In this case, the LLM
fails to set the type-hint for the front legs.

REFERENCES

[1] Xiaoyuan Guo, Jun Xiao, and Ying Wang. 2018. A survey on algorithms of
hole filling in 3D surface reconstruction. Vis. Comput. 34, 1 (jan 2018), 93–103.
https://doi.org/10.1007/s00371-016-1316-y

[2] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007.
Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (jul
2007), 71–es. https://doi.org/10.1145/1276377.1276466

[3] Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface recon-
struction. ACM Trans. Graph. 32, 3, Article 29 (jul 2013), 13 pages. https:
//doi.org/10.1145/2487228.2487237

[4] Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. 2005. Lin-
ear Rotation-invariant Coordinates for Meshes. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH) 24, 3 (2005), 479–487.

[5] Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli,
and Hao Su. 2023. Partslip: Low-shot part segmentation for 3d point clouds via
pretrained image-language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 21736–21746.

[6] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. 2017.
SymPy: symbolic computing in Python. PeerJ Computer Science 3 (Jan. 2017),
e103. https://doi.org/10.7717/peerj-cs.103

[7] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J.
Guibas, and Hao Su. 2019. PartNet: A Large-Scale Benchmark for Fine-Grained
and Hierarchical Part-Level 3D Object Understanding. In CVPR.

[8] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. 2004. Ridge-valley
lines on meshes via implicit surface fitting. ACM Trans. Graph. 23, 3 (aug 2004),
609–612. https://doi.org/10.1145/1015706.1015768

[9] Habib Slim, Xiang Li, Yuchen Li, Mahmoud Ahmed, Mohamed Ayman, Ujjwal
Upadhyay, Ahmed Abdelreheem, Arpit Prajapati, Suhail Pothigara, Peter Wonka,
and Mohamed Elhoseiny. 2023. 3DCoMPaT++: An improved Large-scale 3D
Vision Dataset for Compositional Recognition. (2023).

[10] Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling.
In Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry
Processing. 109–116.

[11] Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan
Cheng, and Yueshan Xiong. 2011. Symmetry Hierarchy of Man-Made Objects.
Comput. Graph. Forum (2011).

[12] Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au,
and Chiew-Lan Tai. 2011. Component-wise Controllers for Structure-
Preserving Shape Manipulation. Computer Graphics Forum 30, 2
(2011), 563–572. https://doi.org/10.1111/j.1467-8659.2011.01880.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01880.x

https://doi.org/10.1007/s00371-016-1316-y
https://doi.org/10.1145/1276377.1276466
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1145/1015706.1015768
https://doi.org/10.1111/j.1467-8659.2011.01880.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01880.x

	1 Introduction
	2 Qualitative Videos
	3 Parameterized Shape Editing Details
	3.1 Shape Abstraction
	3.2 Parameterized Shape Editing DSL
	3.3 Pre-Processing Input 3D Assets
	3.4 Post-Processing Edited 3D Assets

	4 Analytical Edit Propagation Details
	4.1 Pseudo-code for Analytical Edit Propagation
	4.2 Analytical Edit Solver

	5 Prompting Details
	6 Experimental Details
	6.1 Dataset
	6.2 Program Quality Metrics
	6.3 LLM Accuracy Metrics
	6.4 Perceptual Study Details
	6.5 AEP Solver Analysis with `GT' Annotation

	7 Failure Cases
	References

