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Figure 1. Our system performs programmatic edits on pattern images without inferring their underlying programs. (Left) Desired edits,
expressed with a pair of patterns (A,A′), are executed on a target pattern B by a generative model to produce B′. (Right) Parametric
changes A → A′ enabled by our domain-specific pattern language induce corresponding changes to the more complex pattern B.

Abstract

Pattern images are everywhere in the digital and physi-001
cal worlds, and tools to edit them are valuable. But editing002
pattern images is tricky: desired edits are often program-003
matic: structure-aware edits that alter the underlying pro-004
gram which generates the pattern. One could attempt to005
infer this underlying program, but current methods for do-006
ing so struggle with complex images and produce unorga-007
nized programs that make editing tedious. In this work, we008
introduce a novel approach to perform programmatic ed-009
its on pattern images. By using a pattern analogy—a pair010
of simple patterns to demonstrate the intended edit—and011
a learning-based generative model to execute these edits,012
our method allows users to intuitively edit patterns. To en-013
able this paradigm, we introduce SPLITWEAVE, a domain-014
specific language that, combined with a framework for sam-015
pling synthetic pattern analogies, enables the creation of016
a large, high-quality synthetic training dataset. We also017
present TRIFUSER, a Latent Diffusion Model (LDM) de-018
signed to overcome critical issues that arise when naively019
deploying LDMs to this task. Extensive experiments on real-020
world, artist-sourced patterns reveals that our method faith-021
fully performs the demonstrated edit while also generalizing022
to related pattern styles beyond its training distribution.023

1. Introduction 024

Visual pattern designs enhance digital media such as pre- 025
sentations, website themes, and user interfaces, and they 026
are woven into the physical world through textiles, wallpa- 027
pers, and product designs like hardware covers. Given the 028
ubiquity of patterns, methods for editing them are essential: 029
designers should be able to quickly experiment with varia- 030
tions, customize designs to meet specific needs, and adapt 031
existing patterns to align with evolving trends. 032

Editing pattern images is not straightforward, as patterns 033
are inherently structured, defined by rules that govern their 034
layout and composition: tiling patterns adhere to principles 035
of alignment and repetition (see Figure 1: top left), while 036
retro-style designs rely on spatial divisions and fills (see 037
Figure 1: bottom left). The edits that designers desire often 038
aim to adjust these underlying organizational rules rather 039
than make superficial, pixel-level changes. We refer to such 040
edits as programmatic edits, requiring manipulation of the 041
underlying program that defines a pattern’s structure. 042

One strategy for enabling such programmatic edits is vi- 043
sual program inference (VPI) [5, 32, 46], where a program 044
that replicates an image is automatically inferred, allowing 045
users to modify the image by adjusting program parameters. 046
However, applying VPI to patterns presents two obstacles. 047
First, VPI attempts to infer a program that fully replicates a 048
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pattern, which can be challenging as patterns are often semi-049
parametric, blending rule-based logic with non-parametric050
components. For instance, the layout of elements in a tiling051
pattern may be rule-based, but the elements themselves may052
not be. Second, editing with an inferred program can be053
cumbersome, as they are often poorly-structured, with many054
unlabeled parameters, making them difficult to interpret.055
Consequently, VPI not only solves a more complex problem056
than necessary but also makes editing more challenging.057

Can we perform programmatic edits without inferring058
the underlying program? Doing so requires the ability to059
express and execute the edit—both without direct access to060
the program’s parameters. To express a programmatic edit,061
it’s crucial to specify both which underlying parameter(s)062
to change and how to modify them. We draw inspiration063
from how humans communicate transformations: through064
analogies. By providing a pair of simple example patterns065
(A,A′) that illustrate the desired change, users can intu-066
itively convey both aspects of the edit. To execute these067
edits, we employ a learning-based conditional generative068
model. Given a pair of simple patterns (A,A′) and a com-069
plex target pattern B, our system generates B′, an edited070
version of B which performs the transformation demon-071
strated between A and A′ while preserving B’s other struc-072
tural features. Crucially, A does not need to replicate or073
even be similar to B—it only needs to demonstrate which074
property to edit and how. Thus, specifying A is a much075
easier task than solving VPI. While prior works [1, 47, 51]076
have applied analogical editing to image manipulation, they077
focus primarily on appearance modifications. In contrast,078
our approach is the first to use analogies for programmatic,079
structure-aware edits. Figure 1 (left) shows examples of080
analogical editing on complex, real-world patterns.081

To make our approach possible, we introduce082
SPLITWEAVE: a domain-specific language (DSL) for083
crafting visual patterns. SPLITWEAVE serves two purposes084
in our method. First, it enables parametric definition of085
input pairs (A,A′), allowing users to guide transformations086
in (B,B′) as if the underlying program for B were ac-087
cessible. In Figure 1 (right), modifying the SPLITWEAVE088
program for A′ produces corresponding changes in B′.089
Second, SPLITWEAVE supports the creation of large-scale090
synthetic training data. We develop program samplers091
that generate high-quality patterns in two common styles:092
tiling-based designs with repeating elements and color field093
patterns characterized by splitting the canvas into intricate094
colored regions. Training a model for analogical editing095
requires a dataset of quartets (A,A′, B,B′). By applying096
identical programmatic edits to the SPLITWEAVE programs097
for both A and B to produce A′ and B′, we ensure that098
the transformation from A to A′ mirrors that from B to099
B′. This approach allows us to generate a diverse dataset100
of analogical quartets. Models trained on this dataset can101

generalize effectively to real-world patterns within these 102
styles and can extend to related styles. 103

We use this synthetic dataset to train a novel diffusion- 104
based conditional generative model for executing analog- 105
ical edits. Our model directly generates edited patterns 106
B′ by conditioning on visual features extracted from in- 107
put patterns (A,A′, B). Existing image-conditioned diffu- 108
sion models [43, 54] prove ineffective, as they fail to in- 109
terpret the input analogies accurately and neglect fine de- 110
tails. To address these issues, we incorporate architectural 111
enhancements that enable our model, TRIFUSER, to effec- 112
tively perform analogical edits. With these improvements, 113
TRIFUSER surpasses prior architectures for analogical edit- 114
ing when applied to pattern images. 115

To evaluate our method, we curated a test set of 50 pat- 116
terns from Adobe Stock spanning 7 distinct styles. A per- 117
ceptual study on this dataset shows that participants prefer 118
edits by TRIFUSER over recent training-free and training- 119
based methods. Although our training data covers only two 120
of these styles, our model demonstrates effective general- 121
ization to the other, out-of-distribution styles. On a syn- 122
thetic validation set with ground-truth analogical edits, our 123
model produces outputs more similar to the ground truth 124
than other methods. Finally, we showcase two applications 125
of our approach: mixing attributes of different patterns and 126
transferring pattern animations. 127

In summary, our contributions are as follows: 128

1. A novel framework for performing programmatic edits 129
to pattern images without requiring program inference, 130
leveraging analogies to specify and apply edits. 131

2. SPLITWEAVE, a DSL for crafting a diverse range of 132
visual patterns, designed to support both parametric 133
control and synthetic dataset generation. 134

3. A procedure for generating synthetic analogical quar- 135
tets, enabling editing of in-the-wild patterns. 136

4. TRIFUSER, a diffusion-based conditional generative 137
model that achieves high fidelity in analogical edits, 138
surpassing prior techniques in both analogical fidelity 139
and generation quality. 140

2. Related Work 141

We review three key areas: (1) Visual Program Inference 142
(VPI) for programmatic editing of structured visual data 143
and its limitations, (2) DSLs and synthetic data generation, 144
specifically for visual patterns, and (3) analogical reasoning 145
in computing, particularly for editing images. 146

Visual Program Inference for Editing: Visual Program 147
Inference (VPI) enables programmatic edits of visual data 148
by inferring executable programs from visual inputs. Prior 149
works have achieved promising results in inferring material 150
graphs [19, 27, 31, 46] and CAD programs for 2D [11, 28] 151
and 3D [42, 53] inputs, using large annotated datasets [46, 152
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52], differentiable program approximations [19, 41], or153
bootstrapped learning [9, 23, 25]. VPI is challenging to154
adapt to pattern editing due to the scarcity of high-quality155
annotated pattern data and the non-differentiability of most156
pattern programs. Also, VPI approaches often yield com-157
plex programs that are difficult to edit and interpret, making158
them impractical for editing. To address these challenges,159
recent work has aimed to simplify programmatic editing by160
inferring edit-specific controls [3, 10, 15] or a limited set of161
semantically meaningful parameters [22, 24, 26, 56]. Our162
approach shares this goal of enabling accessible control but163
extends it further: we transfer control from simple para-164
metric objects to complex in-the-wild images via analogy,165
bypassing the need for VPI.166
DSL and Synthetic data Domain-Specific Languages167
(DSLs) enable concise descriptions of structured objects,168
facilitating their creation. Prior works have developed DSLs169
for Zentangle patterns [45], material graphs [46], semi-170
parametric textures [14], and 3D models [21, 38]. Our DSL171
focuses on visual patterns constructed through partitioning172
and merging of canvas fragments. Closest to our work is173
ETD [30], which also uses canvas partitioning and merging174
operators, though it is limited to stationary patterns.175
Analogical Reasoning Analogical reasoning is a founda-176
tional AI task: early work includes Evans’ ANALOGY177
program [6], CopyCat [18], and Structure-Mapping En-178
gine [7]. In visual computing, Image Analogies [16] pi-179
oneered the concept of analogy-driven editing. Recently,180
diffusion models have been adapted for analogical edit-181
ing. DIA [51] introduced a training-free approach to ana-182
logical editing using pretrained diffusion models. Anal-183
ogist [13] offers a complementary method, leveraging in-184
painting models alongside multimodal reasoning from large185
language models [36]. These training-free approaches are186
limited to images within the diffusion model’s training do-187
main, limiting their applicability to patterns. Other meth-188
ods attempt to learn analogical editors by finetuning dif-189
fusion models on analogical pairs [1, 34, 47]. However,190
the focus of all these works remains largely on stylistic, ap-191
pearance edits, often failing to perform programmatic edits.192
This limitation arises both from the models’ architectures193
and from the lack of training pairs with programmatic edits.194
Our work addresses both these gaps, enabling structured,195
programmatic analogical edits for visual patterns.196

3. Method197

Our objective is to enable programmatic edits of 2D visual198
patterns without inferring their underlying programs. In-199
stead, we propose an alternative that uses analogies to ex-200
press desired edits and a conditional generative model to201
execute them. Formally, given two source patterns A and202
A′ that demonstrate a desired edit, along with a target pat-203
tern B, our goal is to generate an edited target pattern B′204
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Figure 2. Overview: To create high-quality visual patterns,
we introduce a custom DSL called SPLITWEAVE. Pairs of
SPLITWEAVE programs (A,B) are then jointly edited to create
analogical quartets. This synthetic data is then used to train TRI-
FUSER, a neural network for analogical pattern editing.

that applies this edit to B. This task is defined as learning 205
a mapping f(A,A′, B) → B′, where A, A′, B, and B′ 206
are 2D RGB images (∈ RH×W×3). To learn this mapping, 207
we generate a large synthetic dataset of analogical pattern 208
quartets (A,A′, B,B′). 209

Figure 2 provides a schematic overview of our approach. 210
First, in Section 3.1 we introduce SPLITWEAVE, a Domain- 211
Specific Language (DSL) that enables the creation and ma- 212
nipulation of various kinds of patterns. Section 3.2 de- 213
scribes our approach for sampling analogical quartets in 214
SPLITWEAVE to create the synthetic training data. Finally, 215
in Section 3.3, we present TRIFUSER, a conditional gener- 216
ative model that learns to execute analogical edits. 217

3.1. A Language for Visual Patterns 218

To enable programmatic edits without program inference, 219
our approach requires two core capabilities: (a) generating 220
a large, high-quality synthetic dataset essential for training 221
models to reliably execute analogical edits, and (b) the abil- 222
ity to create and parametrically control analogy inputs at 223
test time to effectively express desired edits. Existing pat- 224
tern generation tools are insufficient for these needs, as they 225
are either limited to narrow pattern domains [45] or demand 226
intense coding effort to produce diverse, high-quality pat- 227
terns [30, 33]. To address these limitations, we introduce 228
SPLITWEAVE, a DSL designed specifically to support ana- 229
logical transformations in visual patterns. SPLITWEAVE 230
combines abstractions for pattern synthesis with a node- 231
based visual programming interface (see Supplementary), 232
enabling efficient generation of high-quality synthetic pat- 233
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Figure 3. Custom program samplers for two pattern styles. Our
samplers produce diverse and high-quality patterns, enabling gen-
eralization to real-world patterns.

terns for training while allowing flexible, precise pattern234
manipulation to define analogy inputs at test time.235

SPLITWEAVE uses three types of operations for struc-236
tured pattern creation: (1) Canvas Fragmentation, which237
allows structured divisions of the canvas, such as brick-238
like or voronoi splits; (2) Fragment ID-Aware Operations,239
enabling transformations that vary across fragments (e.g.,240
scaling alternating rows or columns) to support spatial vari-241
ability in non-stationary pattern designs; and (3) various242
SVG Operators for outlining, coloring, and compositing.243
Together, these operations enable efficient creation of pat-244
terns with complex structure and visual variety. Figure 2245
(left) illustrates these capabilities in a SPLITWEAVE pro-246
gram for generating a tiling pattern design.247

Our goal is to generate high-quality synthetic patterns248
using SPLITWEAVE that enable trained editing models to249
generalize well to real-world patterns. Naive sampling from250
the DSL grammar often leads to overly complex or inco-251
herent patterns, limiting their effectiveness in model train-252
ing. Instead, we draw inspiration from recent advances253
in fields such as geometric problem solving [50] and ab-254
stract reasoning [29], where tailored data generators have255
proven essential for tackling complex tasks. Following a256
similar approach, we design custom program samplers for257
two versatile and widely-used pattern styles. The first, Mo-258
tif Tiling Patterns (MTP), consists of compositions based259
on repeated Tile elements. These patterns exhibit controlled260
variations in tile properties across the canvas (e.g. orienta-261
tion, color, and scale), creating visually cohesive yet richly262
diverse structures. The second, Split-Filling Patterns (SFP),263
are generated by dividing the canvas into ordered fragments,264
applying region-specific coloring and transformations based265
on fragment IDs. Both pattern styles are common in digi-266
tal design and support a wide range of programmatic varia-267
tions, making them particularly suited for analogical editing268
tasks. Example patterns generated by our program samplers269

Figure 4. We create synthetic analogical quartets (A,A′, B,B′)
with consistent edits between A and B pairs, providing data for
training an analogical editing models.

are shown in Figure 3; additional implementation details are 270
in the supplementary materials. 271

3.2. Sampling Analogical Quartets 272

With the ability to generate diverse synthetic patterns using 273
SPLITWEAVE (Section 3.1), our goal is now to construct 274
analogical pattern quartets (A,A′, B,B′). Each pattern im- 275
age in a quartet is generated by a SPLITWEAVE program z. 276
These quartets serve as structured training data for editing 277
models, allowing them to learn consistent transformations 278
that can generalize across different pattern domains. 279

Analogies in our framework are grounded in Structure 280
Mapping Theory [12], which defines analogies as mappings 281
of relational structure from a base to a target domain. We 282
designate (A,A′) as the base and (B,B′) as the target, with 283
the requirement that the relationship R between program 284
pairs (zA, zA′) and (zB , zB′) remains consistent: 285

R(zA, zA′) = R(zB , zB′). (1) 286

Rather than focusing on visual similarity between the pat- 287
terns (A,A′) themselves, this program-level analogy allows 288
us to generate quartets with transformations that affect the 289
underlying program, facilitating programmatic edits. 290

To construct these analogical quartets, we use a program 291
sampler along with a predefined set of editing operators E. 292
For each quartet, we begin by sampling an edit e ∈ E, fol- 293
lowed by sampling initial programs zA and zB that are com- 294
patible with e. Applying e to both zA and zB yields trans- 295
formed programs zA′ and zB′ . By using identical transfor- 296
mations across domains, we ensure a consistent “edit rela- 297
tion” across the quartet, satisfying Equation 1 by construc- 298
tion. In Figure 4, we illustrate examples of synthetic ana- 299
logical quartets generated using this method, demonstrating 300
consistent transformations between (A,A′) and (B,B′). 301
Edit Operators E. We focus on edits targeting specific 302
sub-parts of the program. Specifically, we consider three 303
types of edits: insertion, removal, and replacement of sub- 304
programs. For example, an edit operator might replace 305
the sub-program responsible for splitting the canvas, while 306
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Figure 5. (Left) TRIFUSER is a latent diffusion model conditioned on patch-wise tokens of the input images (A,A′, B) to generate the
analogically edited pattern B′. (Right) To achieve high-quality edits, we enrich these tokens by fusing multi-level features from multiple
encoders, followed by a 3D positional encoding: 2D to specify spatial locations and 1D to specify the token’s source (A, A′ or B).

other edits may insert or remove tiles within the pattern.307
Please refer to the supplementary for more details.308

3.3. Learning an Analogical Editor309

Our goal is to train a model on the synthetic data that is310
capable of performing analogical edits on real, in-the-wild311
patterns. Specifically, we aim to generate the target pat-312
tern B′ from an input triplet (A,A′, B). This approach al-313
lows users to demonstrate desired edits with a simple pat-314
tern pairs (A,A′), which the model then applies to a com-315
plex patterns B to produce B′. Given the success of Latent316
Diffusion Models (LDMs) in various generative modeling317
tasks [43], we chose to adapt an LDM for our task as well.318
We propose TRIFUSER, a latent diffusion model (LDM) for319
analogical editing (Figure 5). We provide a brief overview320
of LDMs to provide context before detailing TRIFUSER ’s321
modifications for analogical editing.322

Preliminaries: Denoising Diffusion Probabilistic Models323
(DDPMs) [17] transform random noise into structured data324
via reverse diffusion steps guided with a conditioning em-325
bedding c(y) (often derived from text). Latent Diffusion326
Models (LDMs) extend DDPMs by mapping data to a327
lower-dimensional latent space via an encoder. During328
training, a UNet model [44] learns to remove noise intro-329
duced into the latents. During inference, a latent sampled330
from a normal distribution is iteratively denoised by the331
model to yield a clean latent. Finally, the clean latent is de-332
coded to generate the output image. Please refer to [55] for333
a more thorough overview. For analogical editing we adapt334
an Image Variation (IM) model [54], which uses patch-wise335
image tokens extracted using a text-image encoder [39] as336
the conditioning embedding c(y).337

The simplest adaptation of an IM model to our task is338
to generate B′ conditioned on image tokens from all three339
input images, concatenated as C = c(A) ∥ c(A′) ∥ c(B),340
where ∥ denotes token-wise concatenation. This approach,341
however, suffers from three drawbacks: Token Entangle-342
ment, Semantic Bias, and Detail Erosion. We discuss each343
of these issues briefly, along with our solutions.344

Detail Erosion: Despite using patch-wise tokens, the ex- 345
tracted features lack the fine-grained information needed to 346
retain key aspects of B in the generated pattern B′. Conse- 347
quently, the model often struggles to preserve elements like 348
tile textures. To address this problem, we combine features 349
from both the first and last layers of the feature encoder: 350

Chl(P ) = Linear(LN(chigh(P )) · LN(clow(P )), (2) 351

where LN is layer normalization, · denotes channel-wise 352
concatenation, P is an input pattern, and Linear is a linear 353
projection layer that fuses low- and high-level features. 354

Semantic Bias: Image variation models typically use fea- 355
ture extractors such as CLIP [39], which are trained to align 356
image embeddings with corresponding text embeddings. 357
Such embeddings emphasize high-level semantics but lack 358
spatial and fine-grained visual details. Combining these em- 359
beddings with features from text-free, self-supervised ex- 360
tractors, such as DiNO [2], has been shown to improve 361
performance in downstream tasks [20, 49]. For our task, 362
a similar approach—combining features from both text- 363
image (m1) and self-supervised (m2) feature extractors— 364
significantly enhances generation quality. The extracted 365
features are fused as follows: 366

Cmix(P ) = Mixer(Cm1

hl (P ) · Cm2

hl (P )), (3) 367

where Mixer is a two-layer MLP that integrates features 368
from the two extractors. 369

Token Entanglement: To successfully perform an analog- 370
ical edit, for each patch-level feature token, the model must 371
be able to identify to which source image (A, A′, or B) that 372
patch belongs as well as the 2D position of the patch within 373
that image. Without these distinctions, the model often fails 374
to identify the pattern to edit (i.e., B) and to recognize the 375
desired edit from (A,A′). To address this problem, we in- 376
troduce 3D positional encodings: two dimensions for spa- 377
tial location within each pattern and one dimension for the 378
source image. These encodings are applied to the extracted 379
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embeddings, yielding:380

CΩ = CPE(A) ∥ CPE(A
′) ∥ CPE(B), (4)381

CPE(P )xy = Cmix(P )xy + PE(tP , x, y), (5)382

where tP is a one-hot vector encoding which input image383
a token comes from and PE(tP , x, y) positionally encodes384
both spatial and source information for each token.385

As we demonstrate in Section 4.4, conditioning on CΩ386
instead of C significantly enhances the quality of patterns387
generated by TRIFUSER. Our adapted architecture, shown388
in Figure 5, integrates the modifications described above to389
effectively address the described drawbacks. To enhance390
generalizability to real-world patterns, we initialize TRI-391
FUSER with an existing pretrained IM model [54], and fine-392
tune only the denoising UNet and the projection layers in393
our feature extractor.394

4. Experiment395

In this section, we evaluate our approach along three di-396
rections: (1) the effectiveness of TRIFUSER at performing397
analogical edits on complex, real-world patterns, emphasiz-398
ing how our synthetic data enables editing of in-the-wild399
pattern images; (2) the ability of TRIFUSER to support pro-400
grammatic, structure-preserving edits without explicit pro-401
gram inference; and (3) the impact of architectural modi-402
fications introduced in TRIFUSER on the quality of gener-403
ated patterns. We conduct a human perceptual study, quan-404
titative assessments, and qualitative comparisons to demon-405
strate our system’s ability to perform high-quality analogi-406
cal edits across a range of pattern types.407

4.1. Experiment Design408

Datasets: We generate a large synthetic dataset of analogi-409
cal quartets, i.e., pairs of analogical patterns (A,A′, B,B′),410
using the SPLITWEAVE program samplers introduced in411
Section 3.1. This synthetic dataset contains approximately412
1 million samples covering two pattern styles, namely Split413
Filling Patterns (SFP) and Motif Tiling Patterns (MTP) (cf.414
Section 3.1). For MTP patterns, we synthesize 100k dis-415
tinct tiles using the LayerDiffuse [58] model, guided by text416
prompts derived from WordNet [35] noun synsets. Addi-417
tionally, we construct a synthetic test set with 1000 ana-418
logical quartets to evaluate model performance on unseen419
synthetic data. Further details on dataset construction are420
provided in the supplementary material.421

To assess TRIFUSER on real-world patterns, we cu-422
rate a test dataset of 50 patterns created by professional423
artists and sourced from Adobe Stock. This dataset spans424
seven distinct sub-domains of 2D patterns, representing a425
range of pattern styles. These styles include MTP and SFP426
patterns as well as previously unseen pattern styles such427
as Memphis-style, geometric, and digital textile patterns.428

Each pattern is annotated with a desired edit, and we use 429
SPLITWEAVE to generate a pair of simpler patterns (A,A′) 430
demonstrating this edit. This test set provides a challeng- 431
ing benchmark to evaluate TRIFUSER’s generalization to 432
diverse, real-world editing tasks. 433

Training details: We fine-tune a pre-trained diffusion 434
model using our synthetic dataset of analogical quartets, as 435
described in the previous section. We initialize our model 436
with Versatile-Diffusion’s Image Variation model [54]. We 437
use SigLIP [57] as our text-image feature encoder and Di- 438
NOv2 [37] for self-supervised features. We fine-tune the 439
model on 8 A100 GPUs using a batch size of 224 for ∼ 65 440
epochs over 7 days. During inference, we generate each 441
edited pattern B′ with typical diffusion parameter settings 442
such as a classifier-free guidance weight of 7.5 and 50 de- 443
noising steps. 444

4.2. Analogical Editing Baselines 445

To evaluate the analogical editing capability of TRIFUSER, 446
we compare it to three baseline methods, each representing 447
a leading approach for analogical image editing. 448

First, we consider training-free editors and latent arith- 449
metic editors. Training-free editors repurpose pre-trained 450
diffusion models to perform analogical edits without addi- 451
tional training [13, 51], leveraging the rich representations 452
learned by diffusion models for editing. In this category, we 453
compare against Analogist [13], the current state-of-the-art 454
method. Latent arithmetic editors, on the other hand, rely 455
on transformations in a learned latent space to infer ana- 456
logical modifications [40, 48]. Note that these approaches 457
only require samples from the target domain, not analogical 458
training pairs. We implement a baseline for this method by 459
fine-tuning a naive Image Variation model [54] on our syn- 460
thetic dataset to learn a generative latent embedding space 461
of patterns. At inference, analogical edits are generated us- 462
ing latent arithmetic: given patterns A, A′, and B, we con- 463
dition the generation of B′ on E(B) +E(A′)−E(A). We 464
refer to this baseline as LatentMod. 465

Finally, we consider analogy-conditioned generative ed- 466
itors, where models are explicitly trained on analogical data 467
to learn analogical transformations [47]. This category in- 468
cludes our proposed TRIFUSER as well. Image Brush, 469
the state-of-the-art method, fine-tunes a diffusion inpainting 470
model for analogical editing with multi-modal condition- 471
ing. Since code for Image Brush is unavailable, we imple- 472
ment a similar baseline by fine-tuning a Stable Diffusion in- 473
painting model. This model, which we term Inpainter, per- 474
forms analogical editing by inpainting the lower-left quad- 475
rant of a 2x2 analogy grid containing (A,A′, B) and condi- 476
tioned on a fixed text template. 477
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Figure 6. Qualitative comparison between patterns generated by
our model, TRIFUSER, and the baselines. TRIFUSER generates
higher quality patterns with greater fidelity to the input analogy.

Preference Rate

TRIFUSER vs. Analogist 87.74%
TRIFUSER vs. LatentMod 80.78%
TRIFUSER vs. Inpainter 72.21%

Table 1. Results of a two-alternative forced-choice perceptual
study comparing our model (TRIFUSER) against three baselines.
Ours is preferred in the overwhelming majority of judgments.

4.3. Editing Real-World Patterns478

To evaluate TRIFUSER’s real-world analogical editing ca-479
pabilities, we conducted a human preference study on the480
curated test set of Adobe Stock patterns.481

We performed a two-alternative forced-choice percep-482
tual study comparing TRIFUSER with baseline methods on483
all 50 entries in the test set. Each method generates k = 9484
outputs for each input tuple, and we select the best one485
based on visual inspection. Participants were shown edited486
patterns generated by two different methods along with the487
input patterns (A,A′, B) and instructed to select the edit488
that best preserved the analogical relationship and exhib-489
ited higher image quality. We recruited 32 participants for490
the study, resulting in a total of 1550 total judgments.491

Table 1 presents the results, showing that TRIFUSER was492
preferred over both Analogist and LatentMod. Due to the493
domain gap between the training data of the underlying494
model [43] and pattern images, Analogist fails to interpret495
and edit pattern images. Meanwhile, LatentMod fails to per-496
form reasonable edits as the embedding space lacks the low-497
level details necessary for programmatic edits While these498
baselines perform adequately on stylistic edits, they are un-499
suitable for programmatic editing. When compared to In-500
painter, TRIFUSER was favored in 72.2% of comparisons.501

Memphis Style Digital FabricGeometric Design

Figure 7. TRIFUSER effectively edits patterns from novel pattern
styles not present in the training dataset. TRIFUSER shows a note-
worthy ability to generalize beyond its training distribution.

Both methods benefit from training on analogical quartets, 502
yet Inpainter sacrifices pattern quality as it generates the 503
edited pattern in only a quarter of the full canvas resolution. 504

Figure 6 shows examples of pattern edits generated by 505
TRIFUSER and the baselines, with our model consistently 506
delivering superior results. In Figure 7, we show examples 507
of TRIFUSER ’s edits on out-of-distribution pattern styles 508
not present in the training set. These results suggest that our 509
synthetic training data enables manipulation of real-world 510
patterns, even extending to certain untrained pattern styles. 511

4.4. Editing Synthetic Patterns 512

Next, we evaluate TRIFUSER’s ability to perform program- 513
matic edits on the synthetic validation set, which contains 514
ground truth patterns B′. Ideally, this would involve verify- 515
ing that the underlying program zB̂′ of the generated pattern 516
reflects the same transformation from zB as that between 517
zA and z′A. However, this would require visual program 518

inference on B̂′, which is infeasible. Instead, we approx- 519
imate this criterion by comparing the program outputs B̂′ 520
and B′ to see if the visual results align with the intended 521
transformation. To quantify this alignment, we use percep- 522
tual metrics—DSim [8], DIST [4] and LPIPS [59]—along 523
with SSIM to capture pixel-level structural similarity. 524

Note that analogies can have multiple valid interpreta- 525
tions, and even a single interpretation may yield several 526
visually-related variations. To account for this multiplic- 527
ity, we generate k = 5 output patterns for each input set 528
(A,A′, B) and select the one that maximizes each metric. 529
In other words, we evaluate whether at least one generated 530
output aligns with the intended target. 531

Table 2 shows the results of this experiment. First, 532
we note that TRIFUSER outperforms all baselines across 533
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DSIM (↓) DISTS (↓) LPIPS (↓) SSIM (↑)

Analogist 0.496 0.432 0.small 0.494
LatentMod 0.242 0.320 0.613 0.502
Inpainter 0.092 0.256 0.371 0.713

TRIFUSER 0.074 0.184 0.304 0.704

Table 2. Quantitative evaluation on the synthetic validation set
shows that TRIFUSER generates patterns with higher perceptual
similarity to the ground truth than the baselines.

DSIM (↓) DISTS (↓) LPIPS (↓) SSIM (↑)

TRIFUSER 0.074 0.184 0.304 0.704

- Pos. Enc. 0.147 0.239 0.383 0.659
- Lower 0.087 0.196 0.335 0.652
- Mix 0.098 0.210 0.345 0.682

Base [54] 0.585 0.460 0.815 0.435

Table 3. Subtractive ablation study on TRIFUSER shows that re-
moving any component (see Section 3.3) degrades performance,
and that removing all components (Base) results in a sharp decline.

all perceptual metrics. These metrics capture different as-534
pects of perceptual similarity [8], and superior performance535
across all of them suggests a comprehensive improvement.536
Second, we observe that the analogy-conditioned generative537
editors (Inpainter & TRIFUSER) surpass both the training-538
free and latent modification editors. Interestingly, Inpainter539
achieves slightly higher SSIM scores than TRIFUSER, sug-540
gesting that future methods combining elements of both541
models might be fruitful.542

4.5. TRIFUSER Ablation543

To evaluate the contributions of each model component in-544
troduced in Section 3.3, we conduct a subtractive analysis545
on the synthetic validation set, using the same perceptual546
and structural metrics as above. For this ablation study,547
we remove each component one at a time and measure the548
resulting performance, as reported in Table 3. The results549
demonstrate that removing any single modification leads to550
a performance drop, with the removal of 3D positional en-551
coding causing the most severe degradation. This is un-552
derstandable: without 3D positional encoding, the network553
often fails to accurately identify which pattern to edit. For554
comparison, we also include results from the original Im-555
age Variation model [54] trained without any modifications556
(Base). As expected, this model performs poorly, under-557
scoring the importance of our modifications in achieving558
high-quality analogical edits.559

5. Application560

The ability to edit patterns without requiring program in-561
ference unlocks new creative possibilities. We demonstrate562

Figure 8. Our model helps users mix elements of different real-
world patterns together, accelerating design exploration.

two practical applications of analogical pattern editing: 563

Pattern Mixing: Figure 8 shows example of using our 564
method to mix elements of two real-world patterns X and 565
Y , allowing the user to create unique, hybrid designs. 566
The Mix operator is implemented by using a synthetic 567
pair (A,A′) to create a variant X ′ of X and then using 568
the pair (X,X ′) to specify an edit to Y : Mix(X,Y ) = 569
f(X,X ′, Y ), where X ′ = f(A,A′, X). See the supple- 570
mentary material for more details. 571

Animation Transfer: TRIFUSER can also be used to create 572
animated sequences of edited patterns. By leveraging para- 573
metric SPLITWEAVE programs, users can generate anima- 574
tions for simple patterns and then apply these animations to 575
complex patterns with no additional effort. See the video in 576
the supplementary material for examples. 577

6. Conclusion 578

In this paper, we introduced a novel approach for program- 579
matic editing of visual patterns without inferring the under- 580
lying program. By using analogies to express desired ed- 581
its and a learned conditional generative model to execute 582
them, our method provides an intuitive solution for pat- 583
tern manipulation. A key component of our approach is 584
SPLITWEAVE, a domain-specific language for generating 585
diverse, structured pattern data. Paired with our procedure 586
for sampling analogical quartets, SPLITWEAVE enables the 587
creation of a large, high-quality dataset for training. We also 588
presented TRIFUSER, a Latent Diffusion Model (LDM) de- 589
signed to overcome critical issues that emerge when LDMs 590
are naively deployed for analogical pattern editing, enabling 591
high-fidelity edits that capture user intentions. Our experi- 592
ments demonstrate that TRIFUSER successfully edits real- 593
world patterns and surpasses baseline methods, while also 594
generalizing to novel pattern styles beyond its training dis- 595
tribution. We believe that our DSL, dataset, and model 596
will help drive further research on in-the-wild pattern im- 597
age editing. Looking forward, we aim to extend this ana- 598
logical editing framework to other domains such as semi- 599
parametric 3D modeling while continuing to improve syn- 600
thetic data quality and scalability. 601
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