
CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Pattern Analogies
Learning to Perform Programmatic Image Edits by Analogy

Supplementary

Anonymous CVPR submission

Paper ID 1268

1. Introduction001

In this document, we present additional details regarding002
our system. First, we provide a brief overview of the videos003
included in the supplemental material. Next, in section 3,004
we provide details of the proposed Domain Specific Lan-005
guage (DSL), SPLITWEAVE, including the design of the006
two pattern-style specific program samplers. Section 5 pro-007
vides additional details regarding Analogical Quartet Sam-008
pling, detailing the programmatic pattern edits employed.009
This is followed by details of our test dataset and the three010
applications enabled by our approach in Section 6. Finally,011
Sections 7, 8, 9 presents additional experiments and results,012
including qualitative examples and failure cases. The code013
for our system — the DSL, program samplers, and model014
training — will be open sourced if and when the paper is015
acceptance.016

2. Video Results017

We provide the following videos in the supplemental mate-018
rials:019

1. A video titled editing.mp4which demonstrates the020
use of SPLITWEAVE for editing real-world patterns021
with simple pattern analogies.022

2. A video titled pattern animation.mp4 which023
presents our results for pattern animation transfer.024
Please refer to section 6.2 for more details on trans-025
ferring pattern animations.026

3. A language for visual patterns027

In the main paper, we introduced SPLITWEAVE, a DSL de-028
signed for creating visual patterns. As described previously,029
we use SPLITWEAVE to (a) generate a large dataset of high-030
quality synthetic patterns for training an analogical editor031
and (b) to define parametric analogy pairs (A,A′) at test-032
time to guide transformation in target pattern B. Further,033
we constructed two custom SPLITWEAVE program sam-034
plers which aid the sampling of high-quality synthetic pat-035

terns in two domains, namely Motif Tiling Patterns (MTP), 036
and Split Filling Patterns (SFP). 037

SPLITWEAVE is designed specifically for generating 038
patterns that exhibit structured partitioning of a 2D canvas. 039
Programs in SPLITWEAVE define a process to map each 040
spatial location on the canvas to an RGBA value, resulting 041
in a visual pattern. This process is achieved through two 042
core mappings: (1) spatial locations (x, y) are first mapped 043
to 2D UV coordinates and (2) UV coordinates are then 044
mapped to outputs such as RGBA values or other signals. 045
SPLITWEAVE provides operators to abstract and simplify 046
these mappings. 047

3.1. UVExpr and SExpr 048

UVExpr and SExpr are the two key types of expressions 049
used in SPLITWEAVE programs to define these mappings: 050

UVExpr A UVExpr defines a function 051

UVExpr : R2 → R2, 052

which maps each spatial location (x, y) on the canvas to 053
a corresponding UV coordinate (u, v). This provides a 054
spatial framework for pattern generation, enabling opera- 055
tions such as distortions, tiling, or structured partitioning 056
(e.g., BrickSplit, HexagonalSplit). Evaluating a 057
UVExpr generates a UV grid which serves as the basis for 058
further evaluating SExprs. 059

SExpr A SExpr defines a function 060

SExpr : R2 → RN , 061

which maps each UV coordinate (u, v) ∈ R2 to an N - 062
dimensional output. The value of N depends on the type of 063
output being generated. SExprs that evaluate to 4-channel 064
outputs (N = 4) are typically used to generate RGBA 065
canvases. Alternatively, SExprs which evaluate to single- 066
channel outputs(N = 1) are used to generate single-channel 067

1

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 1. Program evaluation We illustrate the evaluation of a SPLITWEAVE program. SPLITWEAVE is used to create directed acyclic
graphs representing data flow between different operators. The UV Grid Operators are used to define UVExprs, which map spatial
coordinate to UV grids. Signal Operators are used to define SExprs which map UV- Grids to single or multi- channel spatial maps (such
as RGBA canvases). Spatially Varying Operators take inputs such as UV- Grids and Fragment Ids to apply spatially varying transforms.
Finally, Utility Operators perform tasks such as composing multiple RGBA canvases together.

buffers used to represent spatial masks, distortion fields, or068
other intermediate signals.069

UVExprs are primarily used to generate structured par-070
titions of the canvas through partitioning operators (e.g.,071
BrickSplit). Evaluating these operators produce not only072
a corresponding UV grid, but also a fragment ID buffer,073
where each spatial location is assigned a fragment identi-074
fier corresponding to its partition. As operators are com-075
posed, the fragment ID buffers are updated and stacked, en-076
abling hierarchical partitioning and fragment- aware trans-077
formations. This mechanism is critical for supporting Spa-078
tially Varying Transformations, used in Motif Tiling Pat-079
terns (MTP), where operations vary based on partitioning,080
and Fragment Grouping, essential for Split- Filling Patterns081
(SFP), where fragments are grouped together for applying082
color fills.083

SExprs typically contain analytical functions defining084
SVG objects, such as 2D circles, Bezier curves etc, and085
Texuture- Mapping operators, which map UV coordinates086
to samples on pre- defined 2D maps. Texture mapping op-087
erators are primarily used for mapping RGBA tiles on UV088
grids. Evaluating SExpr on different UV- grids results in089
different outputs. These outputs are used to generate RGBA090
canvases or auxiliary data buffers for generating the visual091
pattern image.092

3.2. Operator Categories093

SPLITWEAVE provides four broad categories of operators094
to support the construction of UVExprs, SExprs, and their095
transformations:096

1. ∼ 50 UV Grid Operators: Used to define UVExprs.097

2. ∼ 70 Signal Operators: Used to define SExprs. 098

3. 10 Spatially Varying Operators: Used to define trans- 099
formations in a partition- aware manner using frag- 100
ment IDs (e.g., resizing alternate rows or applying per- 101
fragment coloring). 102

4. Utility Operators: Used for remaining purposes such 103
as combining multiple canvases (SourceOver) or gen- 104
erating auxiliary spatial signals used in fragment- 105
aware operations. 106

In Figure 1, we illustrate the evaluation of a 107
SPLITWEAVE program used to create a MTP pattern. This 108
program uses all the four different types of operators, 109
each associated with a separate color. To create the pat- 110
tern, we separately create a background canvas and a fore- 111
ground canvas. To create the foreground canvas, we first 112
convert the pixel- space canvas to a UV cartesian grid (∈ 113
[−1, 1]2) using Cartesian. This grid is subsequently 114
rotated using the Rotate operator. Next, by using the 115
BrickSplit operator, we create two outputs, a trans- 116
formed UV- grid, which now consists of brick- style spatial 117
partitions, and a 2D fragment- ID buffer containing integers 118
that corresponds to fragment IDs. Using the fragment- ID 119
buffer, we apply spatially- varying scaling to decrease the 120
size of tiles in alternate columns. This is followed by a 121
ApplyTile operator to create the foreground canvas. In- 122
ternally, ApplyTile evaluates the SExprs corresponding 123
to each tile on the transformed UV- grid, and merges alter- 124
nate rows of the resulting two RGBA canvases using the 125
fragment- ids from BrickSplit. A similar process is fol- 126
lowed for the background to obtain the background canvas. 127

2

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

tile_cfg:
 tileset: [
 CfgNode({'tilefile': 'rramblrk_0.png',
 'tile_effects': CfgNode({'do_rotate': False, 'rot': 0,
 ..., 'opacity': 0.75})}),
 CfgNode({'tilefile': 'rramblrk_1.png',
 'tile_effects': CfgNode({'do_reflect': True, 'rot': 0,
 ..., 'opacity': 1.0})})]
 tile_order:
 signal:
 _type: DiscreteSignal
 discrete_mode: y
 k: 2
 ...
layout_cfg:
 deform:
 _type: no_deform
 post_deform: ...
 pre_deform: ...
 split:
 _type: RectRepeatShiftedY
 ...
cellfx_cfg:
 effects: [CfgNode({'_type': 'ScaleFx', 'scale': 0.4818, 'mode': 'single',
 'signal': CfgNode({'crop_x': 0.5,
 'discrete_mode': 'x',
 'k': 2,
 ... })})]
bg_cfg:
 ...
border_cfg: None
fill_cfg: None

Sample Compile Execute

Attribute Tree SplitWeaver Program

Pattern

Figure 2. Our Custom program samplers Φ generates attribute trees AT , a hierarchical data structure that encodes patterns structure
specification. The attribute trees are then compiled into SPLITWEAVE programs. Finally, we generate visual patterns by evaluating
SPLITWEAVE program. The use of Φ and AT help generate high- quality synthetic patterns.

Finally, we combine the background and foreground with128
the SourceOver operator to obtain the final MTP pattern.129

3.3. Implementation130

SPLITWEAVE is implemented in Python, making it acces-131
sible to a wide range of users, including those with limited132
programming experience. This lowers the learning curve133
for novice users and facilitates integration with emerging134
tools, such as large language models (LLMs), for program-135
matic generation and manipulation of visual patterns. The136
core operators in SPLITWEAVE are implemented using Py-137
Torch [9], which allows many of the operators to be auto-138
matically differentiable. This opens up exciting possibilities139
for future work in using automatic differentiation for visual140
program inference, enabling the recovery of programmatic141
structures directly from visual patterns.142

We have also developed a front- end application us-143
ing Rete.js [3] to support visual programming with144
SPLITWEAVE. This tool simplifies the creation and ma-145
nipulation of SPLITWEAVE programs by providing an intu-146
itive, node- based interface. Manipulation of SPLITWEAVE147
programs using this interface is demonstrated in the supple-148
mental videos. Currently implemented as a proof of con-149
cept, it is primarily intended for inspecting SPLITWEAVE150
programs and performing parametric analogical edits on151
real- world patterns. Future work will focus on refining the152
application to make it more user- friendly and suitable for153
broader usage. We hope that SPLITWEAVE serves as a step-154
ping stone for further research in visual pattern generation155
and manipulation, inspiring new methodologies and appli-156
cations in this domain.157

4. Custom Program Samplers158

As discussed in the main paper, random sampling of the159
SPLITWEAVE grammar often produces poor- quality pat-160
terns that are incoherent or irrelevant for training. To ad-161

dress this limitation, we construct custom program samplers 162
designed to generate high- quality SPLITWEAVE programs 163
through a structured, hierarchical process. 164

The custom program samplers work by generating an at- 165
tribute tree, a hierarchical data structure that encodes the 166
specification for a pattern. This attribute tree is then com- 167
piled into a valid SPLITWEAVE program, which, when exe- 168
cuted, produces the final visual pattern. The pipeline can be 169
formalized as: 170

Φ
Sample−−−−→ AT

Compile−−−−→ PSW
Execute−−−−→ Pattern, 171

where Φ is a high- level process specification that defines 172
the abstract structure of the pattern, AT is the attribute tree 173
that instantiates this structure with specific parameters, and 174
the resulting SPLITWEAVE program, represented as PSW , 175
defines the procedural steps to produce the pattern. Figure 2 176
illustrates this workflow with an example, showing the at- 177
tribute tree, its compilation into a SPLITWEAVE program, 178
and the resulting visual pattern. 179

The attribute tree AT is constructed by first designing an 180
abstract process specification Φ that represents the steps in- 181
volved in creating a pattern. For example, in Motif Tiling 182
Patterns (MTP), Φ includes stages such as sampling tiles, 183
sampling layout parameters, and sampling effects like back- 184
ground elements. Each stage in Φ corresponds to a node or 185
sub- tree in AT , where the nodes represent specific compo- 186
nents, and the edges encode relationships or contextual pa- 187
rameters. To populate AT , we implement domain- specific 188
random samplers for each node in the tree. These samplers 189
generate valid and diverse configurations for their respec- 190
tive components. At the top level, a hierarchical sampler 191
integrates these components to form a complete attribute 192
tree. For instance, the MTP sampler samples specification 193
for canvas partitioning, tiles and their transformations and 194
spatially varying effects, combining them into a unified rep- 195
resentation. 196

3

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Motif Tiling Motif Tiling Motif TilingMotif TilingSplit Filling Split Filling Split Filling

Poor Synthetic Pattern SamplesStandard Synthetic Pattern Samples

Figure 3. We present synthetic samples generated by our custom program samplers for two pattern styles, namely, Motif Tiling Patterns
(MTP) and Split Filling Pattern (SFP). The custom program sampler can still produce poor quality patterns as depicted in the rightmost
two columns.

The hierarchical nature of the attribute tree allows mod-197
ular control over each component, enabling flexibility and198
extensibility. By sampling each node independently, the199
custom samplers ensure that the resulting patterns are both200
diverse and semantically meaningful, addressing the chal-201
lenges of random grammar sampling. Once the attribute202
tree AT is constructed, it is compiled into a SPLITWEAVE203
program. This compilation step translates the hierarchi-204
cal structure and parameters encoded in AT into valid205
SPLITWEAVE code, adhering to the syntax and semantics206
of the DSL. Executing the compiled SPLITWEAVE program207
produces the final visual pattern. This structured workflow208
provides a controlled and flexible framework for generat-209
ing patterns. The combination of a process- driven attribute210
tree design and creation of pattern style- specific samplers211
ensures the generation of high- quality visual patterns.212

In figure 3, we present synthetic samples of both MTP213
and SFP styles generated by this process. We also show fail-214
ure cases in the two right- most columns. The custom sam-215
pler for MTP patterns sometimes generates samples with a216
high amount of stretching, too much visual complexity, or217
sparse tiling. Similarly, SFP pattern sampler can fail due218
to trivial grid partitioning, over- zooming, or poor random219
color section.220

To create the MTP patterns we also generate a large221
dataset of 100, 000 RGBA tiles. Earlier experiments with222
fewer tiles showed that having a diverse and large set of223
tiles is essential to generalize to ‘in- the- wild’ real- world224

Figure 4. We generate tiles for MTP patterns using LayerDif-
fuse [15]. We present both good quality tiles (top 3 rows) and
poor quality tiles (bottom row).

patterns. To create tiles on a large variety of subjects, we 225
first extract a subset of nouns from wordnet- synset [8]. 226
First, we prune the nouns by type (avoiding types such as 227
‘event’, ‘process’), followed by rejection based on keyword 228
match (to avoid different forms of ‘bacteria’, ‘virus’ etc.). 229
Finally, we use SigLIP [14] text- encoding of prompts in the 230
form of ‘‘A photo of a/an $item’’ to cluster the 231

4

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Poor Analogy QuartetsStandard Analogy Quartets

Figure 5. We present analogical quartets created using our approach. While many analogical quarters are of good quality, our synthetic
sampling process can also result in poor quality quartets, as shown in the right- most column.

nouns and extract ∼ 10, 000 distinct nouns. These nouns232
are then used to create text- prompts using a template of the233
form ‘‘A minimal $style $second term of234
a $noun $minimalism on a $color scheme235
background.’’ where the variables such as $style236
and $second term are filled with random samples from237
list of keywords. Then, we generate RGBA images for each238
prompt using LayerDiffuse [15], which generates images239
with alpha maps. Finally, tiles are created by extracting240
a tight bounding box subset of the generated image, with241
simple thresholds to reject samples in case of too high and242
too low complexity (measured using JPEG [13] compres-243
sion). Figure 4 presents a few samples of tiles generated244
by this process. We note a few recurring failure cases: a)245
Extremely simple tiles, b) tiles with multiple objects, c)246
Tiles with poor cropping, and d) realistic rendering effects247
on tiles. Despite these flaws, a majority of the tiles seem to248
be useful, particularly to help to model avoid overfitting to249
training tiles.250

5. Sampling Analogical Quartet 251

In the main paper, we introduced analogical quartets 252
(A,A′, B,B′) that are used to our train analogical editing 253
model. These quartets are grounded in Structure Mapping 254
Theory [6], which defines analogies as mappings of rela- 255
tional structure from a base to a target domain. The rela- 256
tionship R between program pairs (zA, zA′) and (zB , zB′) 257
remains consistent: 258

R(zA, zA′) = R(zB , zB′). (1) 259

Here, we provide additional details on how edits are 260
defined, sampled, and applied to construct these quartets, 261
along with examples and a discussion of failure cases. 262

Edits in our framework operate directly on the attribute 263
tree AT , rather than on SPLITWEAVE programs. This ap- 264
proach ensures semantic validity and allows for efficient re- 265
sampling of components. Each edit targets a node just be- 266
low the root of the tree, corresponding to high- level com- 267
ponents in the pattern creation process. For Motif Tiling 268

5

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Replace Coloring (SFP)

(b) Replace Layout (MTP)

(c) Add Effect (MTP)

Figure 6. We present examples of editing synthetic patterns A with
different edits to generate edited pattern A′.

Patterns (MTP), the editable components include:269
1. Tiles: Add, remove, or replace tiles in the pattern.270

2. Layout: Replace the layout structure.271

3. Cell Effects: Add or remove specific spatially varying272
effects applied to cells.273

4. Background and Border: Replace background or bor-274
der styles.275

For Split- Filling Patterns (SFP), the editable components276
include:277

1. Foreground Layout and Background Layout: Replace278
the layout for either foreground, background or both279
elements.280

2. Fill Specifications: Replace the specifications for fill-281
ing regions.282

Edits are applied by resampling or modifying nodes in283
the attribute tree. To perform a replace edit, the target node284
is resampled to produce a new specification, such as a new285
layout or tile configuration, and this new specification is286
used to create both A′ and B′. To perform a add edit, a287
new node is created and inserted into the appropriate list288
(e.g., adding a tile or effect). Finally, to perform a remove289
edit, a node is added, and the order of the quartet is flipped290
(e.g., swapping A ↔ A′ and B ↔ B′). Applying random291
edits to randomly sampled pattern sets (A,B) can gener-292
ate invalid new pattern (A′, B′). Therefore, we instead first293
sample an edit e and, perform rejection sampling of (A,B)294
pairs to generate valid analogical quartets.295

In Figure 6, we present some examples of pattern pairs296
generated by editing a pattern A to create A′, of both MTP297
and SFP styles. Figure 5 provides examples of generated298

Figure 7. Our model enables users to mix aspects of different pat-
terns to create novel patterns. In this example, The layout of X is
mixed with the tiles of Y to generate the pattern Y ′.

analogical quartets, demonstrating consistent transforma- 299
tions between (A,A′) and (B,B′). Despite its robustness, 300
our approach can encounter failure cases. For instance, de- 301
spite the pattern programs satisfying equation 1, visually 302
salient relation between (A,A′) and (B,B′) may not be 303
analogical. Furthermore, sometimes (A,A′) pair may not 304
clearly demonstrate the desired change. 305

6. Additional Details 306

We now provide additional details regarding our test set 307
consisting of real- world patterns, and 308

6.1. Test Set Creation 309

To evaluate our method, we created a test set by collecting 310
116 patterns from Adobe Stock. Based on visual inspec- 311
tion, we annotated desirable edits for 50 patterns in text. For 312
each annotated edit, we manually constructed input analo- 313
gies using SPLITWEAVE. These analogies were not always 314
designed to be simple, as we aimed to test the model’s abil- 315
ity to interpret non- trivial analogies effectively. The test set, 316
along with annotated edits, is included in the supplementary 317
material. 318

6.2. Application: Pattern Mixing 319

The goal of pattern mixing is to transfer aspects of one real- 320
world pattern X to another real- world pattern Y . This ap- 321
proach makes it easier to create novel variations of patterns 322
and to transfer specific aspects of patterns that may not be 323
present in our synthetic dataset. To achieve this, we con- 324
struct an analogy pair (X,X ′), which is used as input to 325
edit Y . This sequential process, referred to as “chaining,” 326
allows edits to build upon the outputs of previous steps. 327

Our model’s ability to use real- world patterns as analogy 328
inputs enables chaining, which is critical for pattern mixing. 329
This capability is attributed to the scale and diversity of the 330
synthetic dataset used during training. Figure 7 illustrates 331
this process for a pair (X,Y) where we mix the layout of 332
X with the tiles of Y . 333

6

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 8. Our model can also be used to create wide canvases of non- stationary patterns by adapting MultiDiffusion [2] for spatially-
conditioned generation. In these examples, we generate patterns of size 1536× 1536 pixels and show a vertically centered crop.

6.3. Application: Pattern Animation334

This application allows users to transfer an animations cre-335
ated using simple synthetic pattern A to real- world patterns336
B. Traditionally, such transfers require inferring the pro-337
gram for B and applying the animation to it. In contrast,338
with our method, users can automatically create analogy339
pairs from A’s animation sequence to generate correspond-340
ing variations in B. The user provides as input (A,A′),341
where A′ represents the frames of the animation, and a real-342
world pattern B. We then employ TRIFUSER to generate343
variations of B that correspond to analogy pairs created for344
each frame as follows:345

B′ = {B′ = M(A,A′, B)|A′ ∈ A′}. (2)346

To ensure temporal consistency, for each frame, we fix347
the initial latent noise, generate n = 5 samples and se-348
lect the one with the lowest PSNR relative to the preced-349
ing frame. This approach avoids program inference and en-350
ables automated animation transfer. A demonstration video351
is provided in the supplementary material. In future, we352
hope to enforce stronger priors to improve temporal consis-353
tency.354

6.4. Application: Wide Non-stationary Canvas355

Visual patterns often need to adapt to varying resolutions,356
such as for use in presentations or posters. This is com-357
monly achieved for stationary patterns by making the pat-358
tern image seamlessly tile- able. In fact, images generated359
using convolution- based diffusion models can also be made360
seamlessly tile- able by employing circular padding in the361
convolution layers. However, no such solution exists for362
non- stationary patterns. We provide a novel solution by363
adapting Multi- Diffusion [2] to our settings.364

Multi- Diffusion solves the task of generating large im-365
ages with diffusion models. This is achieved by first gen-366
erating model predictions on tiled crops of the canvas and367

Analogy DSIM DISTS LPIPS SSIM
data (↓) (↓) (↓) (↑)

LatentMod
CATEGORICAL

� 0.242 0.320 0.613 0.502

LatentMod
TOKENWISE

� 0.307 0.333 0.581 0.500

LatentMod
ANALOGICAL

� 0.273 0.330 0.620 0.525

Table 1. We compare different variations of LatentMod baselines.
We observe that none of the variations are suitable for performing
precise programmatic edits, indicating the unsuitability of latent-
arithmetic based analogical editing for precise structure editing.

using the average predicted noise across overlapping image 368
crops at each denoising step. Applying this naively to our 369
method fails as our model strongly depend on the condition- 370
ing input (A,A∗, B) for generating B′, i.e, they have strong 371
dependence on the spatial orientation of the conditioning 372
embeddings. To circumvent this issue, we adapt multi- 373
diffusion for our model by performing consistent cropping 374
across analogy inputs (A,A∗, B) and the latent code of B∗ 375
during generation. This adaptation enables the generation 376
of wide, non- stationary canvases. Figure 8 illustrates three 377
examples generated using this method, where we generated 378
wide canvases which are 1536× 1536 pixels in size. 379

7. Quantitative Results 380

We now describe additional experiments conducted to fur- 381
ther validate our system. First we discuss quantitative eval- 382
uations in this section, followed by qualitative results in sec- 383
tion 8. 384

7

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9. We compare our method, TRIFUSER, against the three baselines with four different metrics. The x- axis of each plot corresponds
to the number of samples used for evaluation, demonstration that TRIFUSER remains superior to the baselines across sample count.

Figure 10. We compare our model against the baselines on a per-
edit type basis. We observe that our model obtains higher percep-
tual similarity to the ground truth target across the edit types.

7.1. LatentMod Ablation385

An important baseline we considered is LatentMod, where386
first we train a model to learn a latent space for represent-387
ing patterns, followed by deploying latent- arithmetic [12]388
to create analogical patterns. Specifically, we first train a389
Image Variation Latent Diffusion Model (LDM) on our pat-390
tern dataset (i.e. condition on tokens extracted from a pat-391
tern image to denoise the same pattern image). Then, dur-392
ing test- time, given patterns (A,A′, B) we infer the ana-393
logically edited pattern B′ by using the LDM to denoise a394
Gaussian- initialized latent conditioned on the latent arith-395
metic tokens (E(B) + E(A′) − E(A)). In this section we396
explore different variations of this model, demonstrating the397
superiority of the baseline used in the main paper over its al-398

ternatives. 399

First, we consider two architectures for the Image vari- 400
ation model. The first, referred to as CATEGORICAL, uses 401
only a single pooled token (i.e. a 1 × 768 size embedding) 402
as the conditioning input E(A). The second, referred to as 403
TOKENWISE, uses all the 257 image tokens generated by 404
the token extracted (i.e. a 257× 768 size embedding) as the 405
conditioning input E(A). Finally, we also consider an alter- 406
native of CATEGORICAL, as introduced in DeepVisualAnal- 407
ogy [10]. This variation, referred to as ANALOGICAL, has 408
the same architecture as CATEGORICAL, but has an alter- 409
nate loss formulation which resembles the test- time usage. 410
Essentially, this model is trained to denoise B′ while being 411
conditioned on E(B)+E(A′)−E(A) explicitly. Note that 412
CATEGORICAL and TOKENWISE only require a dataset of 413
training patterns, whereas ANALOGICAL requires analogi- 414
cal quartets (A,A′, B,B′) during training as well (similar 415
to conditional generative approaches like ImageBrush [11] 416
and our approach, TRIFUSER). 417

Table 1 compares these approaches on our synthetic 418
validation set, reporting perceptual metrics—DSim [5], 419
DIST [4] and LPIPS [16]—along with SSIM to capture 420
pixel- level structural similarity. We first note that TO- 421
KENWISE shows worse results than CATEGORICAL. Since 422
TOKENWISE is conditioned on a large embedding of size 423
257× 768, the latent embedding fails to aid analogical rea- 424
soning (i.e. compression is essential for learning a latent 425
space capable of analogical latent arithmetic). Secondly, 426
we notice a surprising result that ANALOGICAL, despite be- 427
ing trained explicitly trained for analogical editing, is infact 428
slightly weaker than CATEGORICAL. Visual inspection re- 429
veals that although ANALOGICAL and CATEGORICAL gen- 430
erate similar results, CATEGORICAL often tends to retain 431
more aspects of the input pattern B compared to ANALOGI- 432
CAL, which consequently sometimes results in a higher per- 433
ceptual similarity to the target B′. 434

Finally, we remark that all these variations remain sig- 435
nificantly weaker than the conditional analogical editors. 436
This indicates that Latent Arithmetic is perhaps not suit- 437

8

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 11. Training TRIFUSER with more analogical quartet samples improves its performance.

Figure 12. Training TRIFUSER with a larger batch size improves its performance.

able for precise editing as there is a inherent tussle between438
(a) representing sufficient details of patterns in the latent439
space to recreate them with high fidelity and (b) having suf-440
ficient compression of the latent space to achieve analogical441
reasoning via latent arithmetic. Consequently, most image-442
editing methods in the diffusion- era have turned towards al-443
ternate strategies such as manipulation of attention map [1]444
and latent noise inversion [7] for enabling precise editing.445

7.2. TRIFUSER Ablations446

As described in the main paper, analogies can have multiple447
valid interpretations, and even a single interpretation may448
yield several visually- related variations. To account for this449
multiplicity, we generate k output patterns for each input set450
(A,A′, B) and select the one that maximizes each metric.451
We first elucidate the relation between the number of gen-452
erated sample k and the different metrics in Figure 9. We453
show four plots, one for each metric. Each plot has the num-454
ber of samples k as the x- axis, and the metric (e.g. LPIPS,455
SSIM) on the y- axis. These plots reveal that for percep-456
tual similarity metrics, TRIFUSER triumphs over the base-457
lines across all values of k. Furthermore, as we increase k,458
TRIFUSER significantly closes the gap between itself and459
Inpainter when measuring SSIM. More importantly, these460
plot reveal that using a smaller number of samples (k = 5461
as used in the main paper) is sufficient, and performance462
does not drastically decrease as k is decreased from 16.463

We also evaluate all the models separately for each type 464
of edit in the synthetic validation set. We measure the aver- 465
age (1− LPIPS with k = 5) (so that higher value indicates 466
better performance) for each type of edit and visualize the 467
results a radar plot as show in Figure 10. We observe that 468
TRIFUSER surpasses all the baselines across the different 469
types of edits. For more details regarding the edits, please 470
refer to section 5. 471

7.3. TRIFUSER Scalability 472

Recent research has shown that scaling neural approaches, 473
in terms of computational complexity and dataset size, 474
is fundamental for achieving compelling results. Conse- 475
quently, it is critical to investigate the scalability of novel 476
models/methods. In this section, we study the scalability of 477
TRIFUSER with respect to its training dataset size and its 478
training compute budget. 479

First, we perform ablations to elicit the relation between 480
training dataset size and TRIFUSER performance. We train 481
three variations of TRIFUSER each with a dataset size of 482
100, 000 samples, 500, 000 samples and 1 Million samples 483
respectively. The performance of these three methods is 484
then compared on the held- out synthetic validation set. The 485
resulting metrics are visualized as line- plots in Figure 11. 486
Here, we provide 4 plots, one for each metric, similar to the 487
format in Figure 9. The x- axis corresponds to the number 488
of samples (k), and the y- axis corresponds to the respec- 489

9

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 13. We show an example of a complex synthetic pattern B which has a SPLITWEAVE program zB with 31 nodes. Inferring
such programs automatically, i.e. VPI, is infeasible. Our approach, in contrast, allows to use to construct simple program zA, and create
analogical patterns (A,A′) to parametrically edit B, without inferring zB . The task of constructing zA is significantly easier (in this
example, zA contains 8 nodes, only ∼ 25% of zB’s size).

tive metrics. We notice a meaningful increase in the perfor-490
mance across the different metrics, as we increase the scale491
of the training dataset. This indicates training the method492
in future with larger datasets containing even more pattern493
styles may result in further improvements.494

Similarly, we study the effect of training compute budget495
on model performance. All our models are typically trained496
on 8 A100- 40GB GPUs with a batch size of 224. To ex-497
plore the relation between training budget and model perfor-498
mance, we train a variation of TRIFUSER on 8 A100- 80GB499
GPUs with a batch size of 448. We report a comparison500
between these two models in Figure 12. As shown in this501
figure, increasing the batch- size results in further improve-502
ments to the model, indicating a positive correlation w.r.t.503
the training budget. In future, training TRIFUSER with a504
larger training budgets may lead to further improvements in505
the model’s performance.506

8. Qualitative Results507

We now present qualitative results to emphasize the utility508
and impressive capabilities of our method. As discussed509
earlier, a primary motivator for our approach is that Visual510
Program Inference attempts to infer the a program that fully511
replicates the input pattern, which not only is a hard task,512

but also results in a tedious editing experience as the user of- 513
ten has to fiddle with various parameters to ascertain which 514
parts of the program must be edited to attain the desired edit. 515
In contrast, with our approach, the user only has to construct 516
the program for (A,A′) which demonstrate which property 517
to edit and how to edit it. Particularly, A does not need to 518
even be similar to B, making the task of constructing the 519
programs (zA, zA′) considerably simpler. 520

In Figure 13, we compare the program of a complex tar- 521
get pattern B, marked as zB , with the simple program, zA 522
constructed to create a analogy pair (A,A′) for editing the 523
layout of B. While zB contains 31 operator nodes, zA con- 524
tains only 8, which is ∼ 25% of the size of zB . We make 525
the following notes: (a) The task users need to perform — 526
that of creating zA — is significantly easier than the task 527
of inferring zB , (b) Using the analogical editor inducing 528
parametric control over pattern B based on the program zA. 529
Consequently, to perform simple edits of pattern B, the user 530
only needs to specify a simple program zA. 531

As mentioned previously, analogies can have multiple 532
valid interpretations, and even a single interpretation may 533
yield several visually- related variations. Consequently, a 534
analogical editor must also be capable of producing mul- 535
tiple interpretations for any given input analogy pairs. Hav- 536
ing such a one- to- many mapping, as our model has, is more 537

10

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 14. TRIFUSER generates multiple equally- valid yet differ-
ent edited images B′.

suitable for editing as the user can select the edited pattern538
that matches their edit intent from multiple generations. In539
contrast, restricting to a singular interpretation may more540
easily lead to scenarios where the system’s and user’s inter-541
pretation of the input analogy differ.542

In Figure 14, we present analogical edits performed on543
real- world patterns by our method, highlighting the genera-544
tion of different equally valid analogy interpretations. The545
first row corresponds to an edit for removing a random col-546
oring variation effect on the input pattern B. TRIFUSER547
produces two outcomes, both reasonable as pattern B does548
not make it clear what the tile’s original color is. The ex-549
ample presented in the second row corresponds to an edit550
to modify the background of the input pattern. However, its551
unclear if the muted ellipses behind the lion tiles are part552
of the tile, or part of the background. Consequently, some553
generations keep these ellipses updating their color accord-554
ingly, while other generations eschew them to provide a uni-555
form colored background as shown in A′. Finally, the third556
example corresponds to an edit on the layout of the input557
pattern. We show two equally reasonable outputs generated558
by our model as the underlying orientation of the bone tile559
is ambiguous.560

Finally, in figure 15, we demonstrate the ability of our561
model to reasonably edit patterns in styles unseen during562
training. Additionally, we present additional qualitative re-563
sults comparing our method to the other baselines in Fig-564
ure 17. Images comparing the four methods across the en-565

Op-Art Oriental TilingGeometric Design

Figure 15. We present additional examples that show that TRI-
FUSER effectively edits patterns from novel pattern styles not
present in the training dataset.

tire test set is also provided in the supplemental material. 566

9. Failure Cases 567

We present and discuss some recurring failure cases for our 568
method. Figure 16 provides 6 exmaples from our test set 569
of real- world patterns where our method fails to generate 570
a reasonable analogical edit. When editing the layout of 571
patterns, our model still sometimes struggles to retain the 572
fine- details of the input pattern’s tile, particularly when they 573
contain text — this is demonstrated in example (b) and (d). 574
Another mode of failure is when the edit does not fully per- 575
form the intended edit, as visible in example (c) and (e). In 576
(c) though the model adds a color change effect on B as 577
intended, it produces color variations that do not match the 578
color variations shown in A,A′. This is due to the usage 579
of relative color shifts (with respect to a hue- wheel) in our 580
synthetic patterns. Similarly, in (e), while the model cor- 581
rectly removes the tile scaling effect, it replaces the fish tile 582
with the cat tile. Finally, a few failure cases also emerge due 583
to the model failing to understand the input analogy pair, as 584
show in examples (a) and (f). 585

10. Limitations 586

While our method demonstrates robust performance and 587
versatility, there are a few limitations that merit discussion. 588

The primary limitation lies in the reliance on a syn- 589
thetic dataset of analogies. To extend this technique to 590
other domains, users must construct a domain- specific lan- 591
guage (DSL) and define editing functions. Furthermore, 592
real- world applicability of our method depends on the cov- 593
erage of the DSL and the editing functions. Although we 594

11

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Add Coloring Effect
(a)

Layout Change
(b)

Add Coloring Effect
(c)

Remove Scale Effect
(e)

Layout Change
(d)

Remove Rotation Effect
(f)

Figure 16. We present examples on the test- set where our method fails to produce a reasonable edit. Edits sometimes fail due to poor
retention of tile- details ((b) and (d)), or imperfectly applying the edit demonstrated with (A,A′) ((c) and (e)) or failing to understand the
input analogy ((a) and (f)).

demonstrate generalization to related pattern styles, the cur-595
rent scale of the dataset limits the model’s ability to han-596
dle entirely novel pattern styles or edits. However, this597
limitation may be addressed by automatic the construction598
of analogical data from multiple domains such as Shader-599
Toy shader code. Such data could enable pretraining on600
a broader scope of analogical variations before fine- tuning601
for specific domains. Additionally, various visual domains602
such as Zentangle patterns, materials, Lego already contain603
well defined DSLs making it easier to extend our framework604
to other structured visual data domains.605

A second drawback is that analogies, while universal in606
their ability to represent arbitaray edits, are not always the607
most efficient modality for conveying edit intent. For exam-608
ple, simple edits such as color changes might be more eas-609
ily performed through direct recoloring of the canvas. Fur-610
thermore, the inherent flexibility of analogies, which allows611
multiple interpretations, can sometimes make it tedious to612
sample and select a desired output. This issue could be613
mitigated by coupling analogies with text- based guidance614
or other constraints to make the process more directed and615
user- friendly.616

Finally, using the system requires constructing anal-617
ogy pairs, which depends on the user’s familiarity with618
SPLITWEAVE or node- based programming. While this619
could pose a barrier to some users, the increasing adop-620
tion of node- based tools in visual programming provides621
a promising path forward. Future research into improving622
user interaction for visual programming and analogical edit-623
ing could further lower this barrier and make the system624

more accessible. 625
Despite these limitations, our work provides a flexible 626

framework for analogical pattern editing and highlights sev- 627
eral avenues for future research, including extending ana- 628
logical datasets, improving edit specificity, and enhancing 629
user interfaces. 630

12

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Real-World
Pattern

TriFuser
(ours) Inpainter LatentMod AnalogistEditing Analogy

Figure 17. Qualitative comparison between patterns generated by our model, TRIFUSER, and the baselines. TRIFUSER generates higher
quality patterns with greater fidelity to the input analogy.

13

CVPR
#1268

CVPR
#1268

CVPR 2024 Submission #1268. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References631

[1] Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-632
Elor, and Daniel Cohen-Or. Cross-image attention for zero-633
shot appearance transfer. In ACM SIGGRAPH 2024 Con-634
ference Papers, New York, NY, USA, 2024. Association for635
Computing Machinery. 9636

[2] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.637
Multidiffusion: Fusing diffusion paths for controlled image638
generation. arXiv preprint arXiv:2302.08113, 2023. 7639

[3] Rete.js Contributors. Rete.js: Javascript framework for vi-640
sual programming, 2023. Version 1.x, accessed November641
20, 2024. 3642

[4] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli.643
Image quality assessment: Unifying structure and texture644
similarity. CoRR, abs/2004.07728, 2020. 8645

[5] Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy646
Chai, Richard Zhang, Tali Dekel, and Phillip Isola. Dream-647
sim: Learning new dimensions of human visual similarity648
using synthetic data. Advances in Neural Information Pro-649
cessing Systems, 36, 2024. 8650

[6] Dedre Gentner. Structure-mapping: A theoretical framework651
for analogy. Cognitive Science, 7(2):155–170, 1983. 5652

[7] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,653
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image654
editing with cross attention control. 2022. 9655

[8] George A. Miller. WordNet: A lexical database for En-656
glish. In Human Language Technology: Proceedings of a657
Workshop held at Plainsboro, New Jersey, March 8-11, 1994,658
1994. 4659

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,660
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming661
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,662
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,663
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu664
Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imper-665
ative style, high-performance deep learning library. Curran666
Associates Inc., Red Hook, NY, USA, 2019. 3667

[10] Scott Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep668
visual analogy-making. In Proceedings of the 28th Inter-669
national Conference on Neural Information Processing Sys-670
tems - Volume 1, page 1252–1260, Cambridge, MA, USA,671
2015. MIT Press. 8672

[11] Yasheng Sun, Yifan Yang, Houwen Peng, Yifei Shen, Yuqing673
Yang, Han Hu, Lili Qiu, and Hideki Koike. Imagebrush:674
learning visual in-context instructions for exemplar-based675
image manipulation. In Proceedings of the 37th Interna-676
tional Conference on Neural Information Processing Sys-677
tems, Red Hook, NY, USA, 2024. Curran Associates Inc. 8678

[12] Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf.679
Zero-shot image-to-text generation for visual-semantic arith-680
metic. arXiv preprint arXiv:2111.14447, 2021. 8681

[13] Gregory K. Wallace. The jpeg still picture compression stan-682
dard. Commun. ACM, 34(4):30–44, 1991. 5683

[14] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and684
Lucas Beyer. Sigmoid loss for language image pre-training.685
In Proceedings of the IEEE/CVF International Conference686
on Computer Vision (ICCV), pages 11975–11986, 2023. 4687

[15] Lvmin Zhang and Maneesh Agrawala. Transparent im- 688
age layer diffusion using latent transparency. ACM Trans. 689
Graph., 43(4), 2024. 4, 5 690

[16] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, 691
and Oliver Wang. The unreasonable effectiveness of deep 692
features as a perceptual metric. In CVPR, 2018. 8 693

14

	. Introduction
	. Video Results
	. A language for visual patterns
	. UVExpr and SExpr

